【题目】如图,正方形ABCD的顶点B在x轴上,点A、点C在双曲线y=(k>0,x>0)上.若直线BC的解析式为y=x﹣2,则k的值为( )
A.24B.12C.6D.4
【答案】C
【解析】
过点A、B作AM⊥x轴于M,BN⊥x轴于N,可证明△ABM≌△BNC,得到BN=AM,BM=CN,可证明△BOE∽△BNC,得到BN=2CN,设C(4+2a,a),则B(4﹣a,2a),得到k=(4+2a)a=(4﹣a)2a,求得a的值,得到C的坐标,从而求得k的值.
解:分别过点A、B作AM⊥x轴于M,BN⊥x轴于N,则∠BMA=∠CNB=90°,
∵正方形ABCD,
∴∠ABC=90°,AB=BC,
∴∠MBA+∠BAM=90°,∠MBA+∠CBN=90°,
∴∠BAM=∠CBN.
在△ABM和△BCN中,
,
∴△ABM≌△BCN(AAS),
∴BN=AM,BM=CN,
由直线y=x﹣2可知B(4,0),E(0,﹣2),
∵∠OBE=∠NBC,∠BOE=∠BNC=90°,
∴△BOE∽△BNC,
∴===2,
∴BN=2CN,
∴设C(4+2a,a),则B(4﹣a,2a),
∵A、C都在y=(k>0,x>0)上,
∴k=(4+2a)a=(4﹣a)2a,
解得a=1.
∴C(6,1),
∴k=6×1=6,
故选:C.
科目:初中数学 来源: 题型:
【题目】二次函数图象是抛物线,抛物线是指平面内到一个定点和一条定直线距离相等的点的轨迹.其中定点叫抛物线的焦点,定直线叫抛物线的准线.
①抛物线()的焦点为,例如,抛物线的焦点是;抛物线的焦点是___________;
②将抛物线()向右平移个单位、再向上平移个单位(,),可得抛物线;因此抛物线的焦点是.例如,抛物线的焦点是;抛物线的焦点是_____________________.根据以上材料解决下列问题:
(1)完成题中的填空;
(2)已知二次函数的解析式为;
①求其图象的焦点的坐标;
②求过点且与轴平行的直线与二次函数图象交点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等边中,,动点从点出发以的速度沿匀速运动,动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为,过点作于,交边于,线段的中点为,连接.
(1)当为何值时,与相似;
(2)在点、运动过程中,点、也随之运动,线段的长度是否会发生变化?若发生变化,请说明理由,若不发生变化,求的长;
(3)如图2,将沿直线翻折,得,连接,当为何值时,的值最小?并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为后放回,同样的乙也从中随机取出一个小球,记下数字为,这样确定了点的坐标.
(1)请用列表或画树状图的方法写出点所有可能的坐标;
(2)求点在函数的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AC=13,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:CB是∠ECA的角平分线;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的顶点坐标分别为, ,.
(1)的面积是_______;
(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;
(3)若为线段上的任一点,则变换后点的对应点的坐标为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.
(1)求证:AD是⊙O的切线;
(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com