分析 (1)先证得四边形AGCH是平行四边形,然后利用SAS证明△HDC≌△GEC,得到CH=CG,进而根据菱形的判定方法得到平行四边形AGCH是菱形,再根据菱形的对角线互相垂直平分的性质可得结论;
(2)根据菱形的面积等于两条对角线乘积的一半,可求得菱形的面积.
解答 (1)证明:∵四边形ABCD与四边形AECF都是矩形,
∴AH∥GC,AG∥CH,
∴四边形AGCH是平行四边形.
∵四边形ABCD与四边形AECF都是矩形,
∴∠D=∠E=90°,∠BCD=∠ECF=90°,
∴∠ECG=∠DCH,
在△HDC与△GEC中,
$\left\{\begin{array}{l}{∠D=∠E}\\{CD=CE}\\{∠DCH=∠ECG}\end{array}\right.$,
∴△HDC≌△GEC(SAS),
∴CH=CG,
∴平行四边形AGCH是菱形,
∴AC、GH互相垂直平分;
(2)解:∵四边形AGCH是菱形,AC=9,GH=4,
∴${S}_{菱形AGCH}=\frac{1}{2}AC•GH=18$.
点评 本题考查了菱形的判定与性质,矩形的性质,全等三角形的判定与性质,菱形面积的计算等知识,通过推理得出四边形AGCH是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 6cm3以上,8cm3以下 | B. | 8cm3以上,10cm3以下 | ||
| C. | 10cm3以上,12cm3以下 | D. | 12cm3以上,14cm3以下 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a≥3 | B. | a>3 | C. | a≤3 | D. | a<3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com