【题目】已知:在矩形中,,分别是边,上的点,过点作的垂线交于点,以为直径作半圆.
(1)填空:点_____________(填“在”或“不在”)上;当时,的值是_____________;
(2)如图1,在中,当时,求证:;
(3)如图2,当的顶点是边的中点时,请直接写出三条线段的数量关系.
【答案】(1)在,1;(2)证明见解析;(3)
【解析】
(1)连接OA,,O为EF中点,所以,因此点A在,根据分析可得,即可求得结果.
(2)证明,得到AF=DH,AE=DFA,所以AD=AF+DF=AE+DH.
(3)延长EF交DH的延长线于点G,先证明,所以AC=DG,EF=FG,因为,所以EH=GH,GH=DH+DG=DH+AE,即EH=AE+DH.
解:(1)在,1;
连接OA,
∵,O为EF的中点,
所以,
所以A在,
当弧AE=弧AF时,,
所以.
(2),,
在矩形中,,
,,
,
又,,
,,
;
(3)延长EF交HD的延长线于点G,
∵F是AD上的中点,
∴AF=DF,
∵,,
∴,
∴AE=DG,EF=FG,
∵,
∴EH=GH,
∴GH=DH+DG=DH+AE,
;
科目:初中数学 来源: 题型:
【题目】如图1,在矩形的边上存在点,使得,我们称点为矩形的“和谐点
(1)求证: ;
(2)如图2,矩形的顶点的坐标为为坐标原点,点分别在轴和轴上,在边上是否存在“和谐点”,如果存在,求出点的坐标;如果不存在,请说明理由
(3)在(2)中,如果点的坐标为,且在上存在“和谐点”求的取值范围
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与轴交于点,与轴交于点,在轴上有一动点,过点作轴的垂线交直线于点,交抛物线于点,过点作于点.
(1)求的值和直线的函数表达式;
(2)设的周长为,的周长为,若,求的值;
(3)如图2,在(2)条件下,将线段绕点逆时针旋转得到,旋转角为,连接、,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两条抛物线与的顶点相同.
(1)求抛物线的解析式;
(2)点是抛物找在第四象限内图象上的一动点,过点作轴,为垂足,求的最大值;
(3)设抛物线的顶点为点,点的坐标为,问在的对称轴上是否存在点,使线段绕点顺时针旋转90°得到线段,且点恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
在综合实践课上,同学们以图形的平移与旋转为主题开展数学活动,如图(1),先将一张等边三角形纸片对折后剪开,得到两个互相重合的△ABD和△EFD,点E与点A重合,点B与点F重合,然后将△EFD绕点D顺时针旋转,使点F落在边AB上,如图(2),连接EC.
操作发现
(1)判断四边形BFEC的形状,并说明理由;
实践探究
(2)聪聪提出疑问:若等边三角形的边长为8,能否将图(2)中的△EFD沿BC所在的直线平移a个单位长度(规定沿射线BC方向为正),得到△,连接,,使得得到的四边形为菱形,请你帮聪聪解决这个问题,若能,请求出a的值;若不能,请说明理由。
(3)老师提出问题:请参照聪聪的思路,若等边三角形的边长为8,将图(2)中的△EFD在平面内进行一次平移,得到△,画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的一个结论,不必证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市实施城乡生活垃圾分类管理,推进生态文明建设. 为增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
⑴ 求8名学生中至少有三类垃圾投放正确的概率;
⑵ 为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果,并求出刚好抽到C、G两位学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB上的动点,将线段CD绕点C逆时针旋转90°,得到线段CE,连接BE,则BE的最小值是( )
A.-1B.C.D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y4x4与x轴,y轴分别交于点A,B,点A在抛物线yax2bx3a(a0)上,将点B向右平移3个单位长度,得到点C.
(1)抛物线的顶点坐标为 (用含a的代数式表示)
(2)若a1,当t-1≤x≤t时,函数yax2bx3a(a0)的最大值为y1,最小值为y2,且y1y22,求t的值;
(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在求出此时点M的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com