精英家教网 > 初中数学 > 题目详情

【题目】我市实施城乡生活垃圾分类管理,推进生态文明建设. 为增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为ABCDEFGH,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.

8名学生中至少有三类垃圾投放正确的概率;

为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果,并求出刚好抽到CG两位学生的概率.

【答案】 P=;⑵

【解析】

1)直接利用概率公式求解可得;

2)利用列表法可得所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.

∵有12个等可能结果,选到至少有三类垃圾投放正确的结果有5个,

8名学生中至少有三类垃圾投放正确的概率为 P=

列表如下:

A

C

F

G

A

CA

FA

GA

C

AC

FC

GC

F

AF

CF

GF

G

AG

CG

FG

12个等可能结果,刚好抽到CG的结果有2个,

P=.

∴刚好抽到CG的概率为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】王老师为了解同学们对金庸武侠小说的阅读情况,随机对初三年级的部分同学进行调查,将调查结果分成以下五类:A:看过0~3本,B:看过4~6本,C:看过7~9本,D:看过10~12本,E:看过13~15.并根据调查结果绘制了如图1、图2两幅不完整的统计图.

(1)2中的a = D所对的圆心角度数为 °;

(2)请补全条形统计图;

(3)本次调查中E类有21女,王老师想从中抽取2名同学分别撰写一篇读书笔记请用列表或画树状图的方法求所抽取的两名学生恰好是一男一女的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A1的坐标为(01),点A2x轴的正半轴上,且∠A1A2O30°,过点A2A2A3A1A2,交y轴于点A3;过点A3A3A4A2A3,交x轴于点A4;过点A4A4A5A3A4,交y轴于点A5;……;按此规律进行下去,则点A2021的坐标为( )

A.(031011)B.(﹣310110)C.(031010)D.(﹣310100)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议每人少开一天车,共建绿色家园,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:

1)本次接受调查的总人数是   人,扇形统计图中骑自行车所在扇形的圆心角度数是   度,请补全条形统计图;

2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在矩形中,分别是边上的点,过点的垂线交于点,以为直径作半圆

1)填空:点_____________(填不在上;当时,的值是_____________

2)如图1,在中,当时,求证:

3)如图2,当的顶点是边的中点时,请直接写出三条线段的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某射击运动员在训练中射击了10次,成绩如图,下列结论正确的是(

A.平均数是8B.众数是8 C.中位数是9 D.方差是1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】茶叶是安徽省主要经济作物之一,2020年新茶上市期间,某茶厂为获得最大利益,根据市场行情,把新茶价格定为400/kg,并根据历年的相关数据整理出第x天(1x15,且x为整数)制茶成本(含采摘和加工)和制茶量的相关信息如下表.假定该茶厂每天制作和销售的新茶没有损失,且能在当天全部售出(当天收入=日销售额-日制茶成本)

制茶成本(元/kg

150+10x

制茶量(kg

40+4x

1)求出该茶厂第10天的收入;

2)设该茶厂第x天的收入为y(元).试求出yx之间的函数关系式,并求出y的最大值及此时x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BA=BC,以AB为直径的⊙O分别交ACBC于点DEBC的延长线与⊙O的切线AF交于点F

(1)求证:∠ABC=2CAF

(2)若AC=2CEEB=1:4,求CEAF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△OAB中,OAOBCAB中点,以O为圆心,OC长为半径作圆,AOO交于点E,直线OBO交于点FD,连接EFCFCFOA交于点G

1)求证:直线AB的切线;

2)求证:ODEGOGEF

3)若AB4BD,求sinA的值.

查看答案和解析>>

同步练习册答案