【题目】如图,在中,,平分,交于点,交的延长线于点,交于点.
(1)求证:四边形为菱形;
(2)若,,求的长.
【答案】(1)详见解析;(2)
【解析】
1)先证出四边形AEGD是平行四边形,再由平行线的性质和角平分线证出∠ADE=∠AED,得出AD=AE,即可得出结论;
(2)连接AG交DF于H,由菱形的性质得出AD=DG,AG⊥DE,证出△ADG是等边三角形,AG=AD=2,得出∠ADH=30°,,由直角三角形的性质得出,得出,证出DG=BE,由平行线的性质得出∠EDG=∠FEB,∠DGE=∠C=∠EBF,证明△DGE≌△EBF得出DE=EF,即可得出结果.
(1)证明:四边形是平行四边形,
,
,
,,
四边形是平行四边形,
平分,
,
,
,
四边形为菱形;
(2)解:连接交于,如图所示:
四边形为菱形,
,,
,,
是等边三角形,,
,,
,
,
,,,,
,,,
在和中,,
,
,
.
科目:初中数学 来源: 题型:
【题目】如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t s.
(1)当点B与点C相遇时,点A、点D在数轴上表示的数分别为________;
(2)当t为何值时,点B刚好与线段CD的中点重合;
(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.
(1)求证:△CEF≌△AEF;
(2)联结DE,当BD=2CD时,求证:AD=2DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种关于整数n的“F”运算:
(1)当n是奇数时,结果为;
(2)当n是偶数时,结果是(其中是使是奇数的正整数),并且运算重复进行.
例如:取,第一次经F运算是29,第二次经F运算是92,第三次经F运算是23,第四次经F运算是74…;若,则第2019次运算结果是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.
(1)求证:CE∥BF;
(2)若BD=2,且EA:EB:EC=3:1:,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边三角形(三条边都相等的三角形是等边三角形)纸板ABC在数轴上的位置如图所示,点A,B对应的数分别为0和-1,若⊿ABC绕着顶点顺时针方向在数轴上连续翻转,翻转第1次后,点C所对应的数为1,则翻转2020次后,点C所对应的数是( )
A.2017B.2018C.2019D.2020
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x (时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:喝酒后几时血液中的酒精含量达到最大值?最大值为多少
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:30在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=6,BC=8,点O在对角线AC上,且OA=OB=OC,点P是边CD上的一个动点,连接OP,过点O作OQ⊥OP,交BC于点Q.
(1)求OB的长度;
(2)设DP= x,CQ= y,求y与x的函数表达式(不要求写自变量的取值范围);
(3)若OCQ是等腰三角形,求CQ的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com