【题目】若变量z是变量y的函数,同时变量y是变量x的函数,那么我们把变量z叫做变量x的“迭代函数”.
例如:z2y3,yx1,则z2x132x1,那么z2x1就是z与x之间的“迭代函数”解析式.
(1)当2006x2020时,zy2,,请求出z与x之间的“迭代函数”的解析式及z的最小值;
(2)若z2ya,yax24axba0,当1x3时,“迭代函数”z的取值范围为1z17,求a和b的值;
(3)已知一次函数yax1经过点1,2,zay2b2ycb4(其中a、b、c均为常数),聪明的你们一定知道“迭代函数”z是x的二次函数,若x1、x2(x1x2)是“迭代函数”z3的两个根,点x3,2是“迭代函数”z的顶点,而且x1、x2、x3还是一个直角三角形的三条边长,请破解“迭代函数”z关于x的函数解析式.
【答案】(1)z= -x+6;-1004;(2)或;(3)
【解析】
(1)把代入zy2中化简即可得出答案;
(2)把yax24axba0代入z2ya整理得z=2a(x-2) 2-7a+2b,再分两种情况讨论,分别得方程组和,求解即可得;
(3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再将y=x+1代入z=ay2+(b-2)y+c-b+4得,根据点x3,2是“迭代函数”z的顶点得出,再根据当z=3时, 解得,又x1、x2、x3是一个直角三角形的三条边长得,代入解得b=-8,c=15,从而得解。
解:(1)把代入zy2中得:
z()2= -x+6
∵-<0,
∴z随着x的增大而减小,
∵2006 x2020 ,
∴当x=2020时,z有最小值,最小值为z= -×2020+6=-1004
故答案为:z= -x+6;-1004
(2)把yax24axba0代入z2ya,得
z2(ax24axb)a
=2ax28axba,
=2a(x-2) 2-7a+2b
这是一个二次函数,图象的对称轴是直线x=2,
当a>0时,由函数图象的性质可得x=-1时,z=17;x=3时,z=-1;
∴
解得
当a<0时,由函数图象的性质可得x=-1时,z=-1;x=3时,z=17;
∴
解得
综上,或
(3)把(1,2)代入y=ax+1得a+1=2
解得a=1
∴y=x+1
把y=x+1代入z=ay2+(b-2)y+c-b+4并整理得
∵点x3,2是“迭代函数”z的顶点,
整理得
当z=3时,
解得
又∵x1x2
∴x1 x3x2
又∵x1、x2、x3还是一个直角三角形的三条边长
∴
即
解得
∴
把代入
解得c=15
∴
故答案为:
科目:初中数学 来源: 题型:
【题目】小虫从点A出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的路程依次为:(单位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9.
(1)小虫最后是否回到出发点A,说明理由;
(2)小虫在第几次爬行后离点A最远,此时距离点A多少厘米?
(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,那么小虫一共得到多少粒芝麻?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)-3-7;
(2) ;
(3)-0.5+(-15.5)-(-17)-|-12|;
(4) ;
(5) ;
(6)(用简便方法计算).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自中央出台“厉行节约、反对浪费”八项规定后,某品牌高档酒销量锐减,进入四月份后,经销商为扩大销量,每瓶酒比三月份降价500元,如果卖出相同数量的高档酒,三月份销售额为4.5万元,四月份销售额只有3万元.
(1)求三月份每瓶高档酒售价为多少元?
(2)为了提高利润,该经销商计划五月份购进部分大众化的中低档酒销售.已知高档酒每瓶进价为800元,中低档酒每瓶进价为400元.现用不超过5.5万元的预算资金购进,两种酒共100瓶,且高档酒至少购进35瓶,请计算说明有几种进货方案?
(3)该商场计划五月对高档酒进行促销活动,决定在四月售价基础上每售出一瓶高档酒再送顾客价值元的代金券,而中低档酒销售价为550元/瓶.要使(2)中所有方案获利恰好相同,请确定的值,并说明此时哪种方案对经销商更有利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com