【题目】 如图1,P是菱形ABCD对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:PD=PE;
(2)求证:∠DPE=∠ABC;
(3)如图2,当四边形ABCD为正方形时,连接DE,试探究线段DE与线段BP的数量关系,并说明理由.
【答案】(1)详见解析;(2)详见解析;(3)DE=BP,理由详见解析
【解析】
(1)根据菱形的性质得出BC=DC,∠BCP=∠DCP,然后利用“边角边”证明△BCP≌△DCP得出PB=PD,由已知PE=PB,即可得出结论;
(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;
(3)证出△PDE是等腰直角三角形,由等腰直角三角形的性质得出DE=PE,即可得出结论.
(1)证明:∵四边形ABCD是菱形,
∴BC=DC,∠BCP=∠DCP,AB∥DC,
∵在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS),
∴PB=PD,
∵PE=PB,
∴PD=PE;
(2)证明:如图1所示:
由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∵∠CFE=∠DFP(对顶角相等),
∴180°-∠DFP-∠CDP=180°-∠CFE-∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)解:DE=BP,理由如下:
∵四边形ABCD是正方形,
∴∠ABC=90°,
由(1)知:PD=BP=PE,
由(2)知,∠DPE=∠ABC=90°,
∴△PDE是等腰直角三角形,
∴DE=PE,
∴DE=BP.
科目:初中数学 来源: 题型:
【题目】如图 1,在平面直角坐标系中,直线l1:yx5与x轴,y轴分别交于A.B两点.直线l2:y4xb与l1交于点 D(-3,8)且与x轴,y轴分别交于C、E.
(1)求出点A坐标,直线l2的解析式;
(2)如图2,点P为线段AD上一点(不含端点),连接CP,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;
(3)如图3,平面直角坐标系中有一点G(m,2),使得SCEGSCEB,求点G的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分8分)
如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(),正六边形的边长为()cm(其中),求这两段铁丝的总长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在矩形ABCD中,AB=8,AD=3,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.
(1)P、Q两点从出发开始到几秒?四边形PBCQ的面积为33cm2;
(2)P、Q两点从出发开始到几秒时?点P和点Q的距离是10cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
(1)判断△ABC的形状: ;
(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.
(1)求甲、乙两队合作完成这项工程需要多少天?
(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com