精英家教网 > 初中数学 > 题目详情

【题目】一节数学课后,老师布置了一道课后练习题:

如图1的直径,点上,,垂足为分别交于点.求证:.

1 2

1)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.

2)如图2,若点和点的两侧,的延长线交于点的延长线交于点,其余条件不变,(1)中的结论还成立吗?请说明理由;

3)在(2)的条件下,若,求的长.

【答案】1)见解析;(2)成立,理由见解析;(3

【解析】

1)如图1中,延长CD交⊙OH.想办法证明∠3=4即可解决问题.

2)成立,证明方法类似(1).

3)构建方程组求出BDDF即可解决问题.

1)延长

为直径,

.

为直径

2)成立;

为直径,

.

为直径

3)由(2)得:

解得:

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图所示二次函数y1x2+2x+2y2x22x+2是“关于y轴对称二次函数”.

1)直接写出两条图中“关于y轴对称二次函数”图象所具有的共同特点.

2)二次函数y2x+22+1的“关于y轴对称二次函数”解析式为   ;二次函数yaxh2+k的“关于y轴对称二次函数”解析式为   

3)平面直角坐标系中,记“关于y轴对称二次函数”的图象与y轴的交点为A,它们的两个顶点分别为BC,且BC6,顺次连接点ABOC得到一个面积为24的菱形,求“关于y轴对称二次函数”的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的两个函数,任取自变量x的一个值,当x0时,它们对应的函数值互为相反数;当x0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数yx2,它的相关函数为

1)已知点A(﹣38)在一次函数yax5的相关函数的图象上,求a的值;

2)已知二次函数y=﹣x2+4x1.当点Bm2)在这个函数的相关函数的图象上时,求m的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半圆⊙O中,直径AB=4,点CD是半圆上两点,且∠BOC=84°∠BOD=36°P为直径上一点,则PC+PD的最小值为(

A.4B.2C.2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰△ABC的直角边AB=BC=10cm,点PQ分别从AC两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t△PCQ的面积为S

1)求出S关于t的函数关系式;

2)当点P运动几秒时,SPCQ=SABC

3)作PE⊥AC于点E,当点PQ运动时,线段DE的长度是否改变?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为24厘米,∠A=60°,点P从点A出发沿线路AB→BD作匀速运动,点Q从点D同时出发沿线路DC→CB→BA作匀速运动.

1)求BD的长;

2)已知点PQ运动的速度分别为4厘米/秒,5厘米/秒,经过12秒后,PQ分别到达MN两点,若按角的大小进行分类,请你确定△AMN是哪一类三角形,并说明理由;

3)设(2)中的点PQ分别从MN同时沿原路返回,点P的速度不变,点Q的速度改变为a厘米/秒,经过3秒后,PQ分别到达EF两点,若△BEF与(2)中的△AMN相似,试求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的正方形网格,△ABC的顶点在网格上,在建立平面直角坐标系后,点B的坐标是(-1-1)

(1)把△ABC向左平移10格得到,画出

(2)画出关于x轴对称的图形

(3)把△ABC绕点C顺时针旋转90°后得到,画出,并写出点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把函数y1x23x2(x0)沿y轴翻折得到函数y2,函数y1与函数y2的图象合起来组成函数y3的图象.若直线ykx2与函数y3的图象刚好有两个交点,则满足条件的k的值为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图将弧BC沿弦BC折叠交直径AB于点D,若AD2DB4,则弦BC的长是___________

查看答案和解析>>

同步练习册答案