【题目】已知树枝AB长为1.将树枝AB按照如下规则进行分形.其中1级分形图中,由B点处生长出两条树枝BD,BE,每条树枝长均为AB长的一半;在2级分形图中,D、E两点处生长出的每条树枝都等于DB长的一半.按照上面分形方法得到3级、4级分形图形.
按照上面的规律,在3级分形图中,树枝长度的总和是_____________;
在n级分形图中,树枝总条数是___________(用含n的代数式表示).
科目:初中数学 来源: 题型:
【题目】如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:
①S1+S2=S3+S4② S2+S4= S1+ S3
③若S3=2S1,则S4=2S2④若S1= S2,则P点在矩形的对角线上
其中正确的结论的序号是 ▲ (把所有正确结论的序号都填在横线上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下图是2019年11月份的日历,用一个正方形任意圈住4个数(如图),仔细观察这4个数,不改变正方形的大小,任意移动方框的位置,找出规律.
(1)若把第一行第一列的那个数表示为,其余各数分别用含的代数式表示,请把表格补充完整
(2)求这四个数的和(用含的代数式表示,要求合并同类项化简)
(3)小明妈妈的生日快到了,小明想送妈妈一个生日礼物,可是却不知道妈妈的生日是几号,于是就问妈妈,可妈妈说我的生日那天在本月日历上横竖列相邻的四个数字的和68的四个数字里面,并且这四个数中最大的数字那天就是我的生日。请你帮助小明确定妈妈的生日.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南昌的雾霾引起了小张对环保问题的重视.一次旅游小张思考了一个问题.从某地到南昌,若乘火车需要小时,若乘汽车需要小时.这两种交通工具平均每小时二氧化碳的排放量之和为千克,火车全程二氧化碳的排放总量比汽车的多千克,分别求火车和汽车平均每小时二氧化碳的排放量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某采摘农场计划种植两种草莓共6亩,根据表格信息,解答下列问题:
(1)若该农场每年草莓全部被采摘的总收入为元,那么两种草莓各种多少亩? (2)若要求种植种草莓的亩数不少于种植种草莓的一半,那么种植种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算题
(1)6+(﹣)﹣2﹣(﹣1.5).
(2)﹣66×4﹣(﹣2.5)÷(﹣0.1).
(3)()×12.
(4).
(5)(﹣2)2×5﹣(﹣2)3÷4.
(6)(﹣10)4+[(﹣4)2﹣(3+32)×2].
(7).
(8)(﹣2)2+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边△ABC中:
(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:
(1)宣传小组抽取的捐款人数为_____人,请补全条形统计图;
(2)在扇形统计图中,求100元所对应扇形的圆心角的度数;
(3)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(背景知识)
数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点、点表示的数分别为、,则、两点之间的距离,线段的中点表示的数为.
(问题情境)
如图,数轴上点表示的数为,点表示的数为8,点从点出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点从点出发,以每秒2个单位长度的速度向左匀速运动,设运动时间为秒().
(综合运用)
(1)填空:
①、两点之间的距离________,线段的中点表示的数为__________.
②用含的代数式表示:秒后,点表示的数为____________;点表示的数为___________.
③当_________时,、两点相遇,相遇点所表示的数为__________.
(2)当为何值时,.
(3)若点为的中点,点为的中点,点在运动过程中,线段的长度是否发生变化?若变化,请说明理由;若不变,请求出线段的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com