【题目】操作:
如图1,正方形ABCD中,AB=a,点E是CD边上一个动点,在AD上截取AG=DE,连接EG,过正方形的中线O作OF⊥EG交AD边于F,连接OE、OG、EF、AC.
探究:
在点E的运动过程中:
(1)猜想线段OE与OG的数量关系?并证明你的结论;
(2)∠EOF的度数会发生变化吗?若不会,求出其度数,若会,请说明理由.
应用:
(3)当a=6时,试求出△DEF的周长,并写出DE的取值范围;
(4)当a的值不确定时:
①若=时,试求的值;
②在图1中,过点E作EH⊥AB于H,过点F作FG⊥CB于G,EH与FG相交于点M;并将图1简化得到图2,记矩形MHBG的面积为S,试用含a的代数式表示出S的值,并说明理由.
【答案】(1)OE=OG,理由参见解析;(2)不会发生变化,∠EOF=45°;(3)6,(0<DE<3);(4)①,②S=a2,理由参见解析.
【解析】试题分析:(1)连接OD,由正方形的性质和已知条件得到△AOG≌△DOE即可;(2)由△AOG≌△DOE得到结论,再结合同角或等角的余角相等求出∠EOF;(3)判断出OF垂直平分EG,计算出周长=DE+EF+DF=AG+FG+DF=AD=AB=6即可;(4)①先判断出△AOF∽△CEO,得出S△AOF:S△CEO=AF:CE,进而求出.②由△AOF∽△CEO得出对应线段成比例,可导出AF×CE=OA×OC,因为S=AF×CE,所以可求出S=OA×OC=a2.
试题解析:(1)OE=OG,理由:如图1,
连接OD,在正方形ABCD中,∵点O是正方形中心,∴OA=OD,∠OAD=∠ODC=45°,
∵AG=DE,∴△AOG≌△DOE,∴OE=OG;(2)∠EOF的度数不会发生变化,理由:由(1)可知,△AOG≌△DOE,∴∠DOE=∠AOG,∵∠AOG+∠DOG=90°,∴∠DOE+∠DOG=90°,∴∠DOE=∠AOG,∵∠EOG=90°,∵OE=OG,OF⊥EG,∴∠EOF=45°,∴∠EOF恒为定值;(3)由(2)可知,OE=OG,OF⊥EG,∴OF垂直平分EG,∴△DEF的周长为DE+EF+DF=AG+FG+DF=AD,∵AB=a=6,∴△DEF的周长为AD=AB=a=6,(0<DE<3);(4)①如图2,
∵∠EOF=45°,∴∠COE+AOF=135°∵∠OAF=45°,∴∠AFO+∠AOF=135°,∴∠COE=∠AFO,∴△AOF∽△CEO,∴S△AOF:S△CEO=(OF:OE)2,∵O到AF与CE的距离相等,∴S△AOF:S△CEO=AF:CE,
∴()2=,∵>0,∴=,②猜想:S=a2,理由:如图3,
由(1)可知,△AOF∽△CEO,∴,∴AF×CE=OA×OC,∵EH⊥AB,FG⊥CB,∠B=90°,∴S=AF×CE,∴S=OA×OC=×=a2.
科目:初中数学 来源: 题型:
【题目】大于–2.5而小于3.5的整数共有··························································( )
A. 6个 B. 5个 C. 4个 D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2008年爆发的世界金融危机,是自上世纪三十年代以来世界最严重的一场金融危机.受金融危机的影响,某商品原价为200元,连续两次降价后售价为148元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为( )
A. 200(1+x)2=148 B. 200(1-x)2=148 C. 200(1-2x)=148 D. 148(1+x)2=200
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。若从中任意摸出一个球,则下列叙述正确的是( ▲ )
A.摸到红球是必然事件 B.摸到白球是不可能事件
C.摸到红球与摸到白球的可能性相同 D.摸到红球比摸到白球的可能性大
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com