【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3b+4c>0;④4a﹣2b≥at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,其中正确的结论有( )
A. ②④ B. ①③④⑤ C. ①②③⑤ D. ①②③④
【答案】D
【解析】
根据抛物线的对称轴可判断①;由抛物线与x轴的交点及抛物线的对称性可判断②;由x=﹣1时y>0可判断③;由x=﹣2时函数取得最大值可判断④;根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.
∵抛物线的对称轴为直线x=﹣=﹣2,
∴4a﹣b=0,所以①正确;
∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,
∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,
∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;
∵由②知,x=﹣1时y>0,且b=4a,
即a﹣b+c=b﹣b+c=﹣b+c>0,
即﹣3b+4c>0,
所以③正确;
由函数图象知当x=﹣2时,函数取得最大值,
∴4a﹣2b+c≥at2+bt+c,
即4a﹣2b≥at2+bt(t为实数),故④正确;
∵抛物线的开口向下,且对称轴为直线x=﹣2,
∴抛物线上离对称轴水平距离越小,函数值越大,
∴y1<y3<y2,故⑤错误.
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=8cm,BC=6cm,点P从点A沿AC向C以2cm/s的速度移动,到C即停,点Q从点C沿CB向B以1cm/s的速度移动,到B就停.
(1)若P、Q同时出发,经过几秒钟S△PCQ=2cm2;
(2)若点Q从C点出发2s后点P从点A出发,再经过几秒△PCQ与△ACB相似.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列选项中,错误的是( )
A. sinα=cosα B. tanC=2 C. sinβ= D. tanα=1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC下方抛物线上一点,且∠ACD=2∠BAC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x﹣2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC下方抛物线上一点,且∠ACD=2∠BAC,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角三角形ABC中,∠ACB=900,AB=10, BC=6,在线段AB上取一点D,作DF⊥AB交AC于点F.现将△ADF沿DF折叠,使点A落在线段DB上,对应点记为A1;AD的中点E的对应点记为E1.若△E1FA1∽△E1BF,则AD= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2 ,为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下列各题:
(1)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图1所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)
(2)如图2,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com