【题目】如图,直线y=x与抛物线y=x2﹣x﹣3交于A、B两点,点P是抛物线上的一个动点,过点P作直线PQ⊥x轴,交直线y=x于点Q,设点P的横坐标为m,则线段PQ的长度随m的增大而减小时m的取值范围是( )
![]()
A. m<﹣1或m>
B. m<﹣1或
<m<3 C. m<﹣1或m>3 D. m<﹣1或1<m<3
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
![]()
A. 9 B. 10 C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PAPB的值称为点P关于⊙O的“幂值”
(1)⊙O的半径为6,OP=4.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=
x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点
的坐标为
,
的面积是
.
求点
的坐标;
求过点
、
、
的抛物线的解析式;
在
中抛物线的对称轴上是否存在点
,使
的周长最小?若存在,求出点
的坐标;若不存在,请说明理由;
在
中
轴下方的抛物线上是否存在一点
,过点
作
轴的垂线,交直线
于点
,线段
把
分成两个三角形,使其中一个三角形面积与四边形
面积比为
?若存在,求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(a,1)、B(﹣1,b)都在双曲线y=
上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是( )
![]()
A.y=x B.y=x+1 C.y=x+2 D.y=x+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.
![]()
探究:
(1)观察“箭头四角形”,试探究
与
、
、
之间的关系,并说明理由;
应用:
(2)请你直接利用以上结论,解决以下两个问题:
①如图2,把一块三角尺
放置在
上,使三角尺的两条直角边
、
恰好经过点
、
,若
,则
;
②如图3,
、
的2等分线(即角平分线)
、
相交于点
,若
,
,求
的度数;
拓展:
(3)如图4,
,
分别是
、
的2020等分线(
),它们的交点从上到下依次为
、
、
、…、
.已知
,
,则
度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2011山东济南,22,3分)如图1,△ABC中,∠C=90°,∠ABC=30°,AC=m,延长CB至点D,使BD=AB.
①求∠D的度数;
②求tan75°的值.
(2)如图2,点M的坐标为(2,0),直线MN与y轴的正半轴交于点N,∠OMN=75°.求直线MN的函数表达式.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.
(1)求购进甲、乙两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7
(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com