【题目】定义:如图,点M,N把线段AB分割成AM.MN,NB,若以AM,MN,NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N线段AB分割成AM,MN,NB,若,则点M,N是线段AB的勾股分割点吗?请说明理由;
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若,求BN的长.
【答案】(1)点M,N是线段AB的勾股分割点,理由见详解;(2)12或13.
【解析】
(1)根据勾股定理的逆定理,即可判断点M,N是线段AB的勾股分割点;
(2)设BN=x,则MN=30-AM-BN=25-x,分3种情况,分类讨论:①当MN是最长边时,,②当BN是最长边时,,③当AM是最长边时,这种情况不存在;分别进行求解,即可.
(1)点M,N是线段AB的勾股分割点,理由如下:
∵,
又∵ ,
∴,
∴以AM,BN,MN为边的三角形是直角三角形,
∴点M,N是线段AB的勾股分割点;
(2)设BN=x,
则MN=30-AM-BN=25-x,
①当MN是最长边时,
∵点M,N是线段AB的勾股分割点,
∴,
∴,
解得:x=12;
②当BN是最长边时,
∵点M,N是线段AB的勾股分割点,
∴,
∴,
解得:x=13;
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C.抛物线经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,△ ABC 在直角坐标系内,三个顶点的坐标分别为A(-2,2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ ABC 关于 y 轴的轴对称图形△ A1B1C1;
(2)一点 O 为位拟中心,在网格内画出所有符合条件的△ A2B2C2,使△ A2B2C2 与△ A1B1C1 位拟,且位拟比为 2:1;
(3) △ A1B1C1 与△ A2B2C2 的面积比为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B. 1 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:
最喜欢娱乐类节目的有______人,图中______;
请补全条形统计图;
根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;
在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中(,,三点在正方形网格的交点上)按如图所示的方式放置,请解答下列问题:
(1),,三点的坐标分别为:____________,_____________,____________;
(2)点关于轴对称的点为点,则点的坐标为______________;
点关于轴对称的点为点,则点的坐标为____________;
将点向下移动得到点,若直线轴,则点的坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________s时,以C点为圆心,2cm为半径的圆与直线EF相切.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为点,且的面积为.若点为反比例函数在第一象限图象上的一点,点在轴上,且使最小,则点的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com