精英家教网 > 初中数学 > 题目详情

【题目】已知直线ABCD.

(1)如图1,直接写出∠BME、E、END的数量关系为   

(2)如图2,BME与∠CNE的角平分线所在的直线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论;

(3)如图3,ABM=MBE,CDN=NDE,直线MB、ND交于点F,则 =   

【答案】(1) ∠E=END﹣BME (2)E+2NPM=180°(3)

【解析】(1)根据平行线的性质和三角形外角定理即可解答.

(2)根据平行线的性质,三角形外角定理,角平分线的性质即可解答.

(3)根据平行线的性质和三角形外角定理即可解答.

(1)如图1,ABCD,

∴∠END=EFB,

∵∠EFBMEF的外角,

∴∠E=EFB﹣BME=END﹣BME,

(2)如图2,ABCD,

∴∠CNP=NGB,

∵∠NPMGPM的外角,

∴∠NPM=NGB+PMA=CNP+PMA,

MQ平分∠BME,PN平分∠CNE,

∴∠CNE=2CNP,FME=2BMQ=2PMA,

ABCD,

∴∠MFE=CNE=2CNP,

∵△EFM中,∠E+FME+MFE=180°,

∴∠E+2PMA+2CNP=180°,

即∠E+2(PMA+CNP)=180°,

∴∠E+2NPM=180°;

(3)如图3,延长ABDEG,延长CDBFH,

ABCD,

∴∠CDG=AGE,

∵∠ABEBEG的外角,

∴∠E=ABE﹣AGE=ABE﹣CDE,

∵∠ABM=MBE,CDN=NDE,

∴∠ABM=ABE=CHB,CDN=CDE=FDH,

∵∠CHBDFH的外角,

∴∠F=CHB﹣FDH=ABE﹣CDE=ABE﹣CDE),

由①代入②,可得∠F=E,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD 中,EF 两点在对角线 BD 上,BE=DF

(1) 求证:AE=CF

(2) 当四边形AECF 为矩形时,直接写出 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲.乙两同学骑自行车从A地沿同一条路到B已知乙比甲先出发他们离出发地的距离Skm)和骑行时间th)之间的函数关系如图1所示给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后甲的速度小于乙的速度

根据图象信息以上说法正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148

(1)计算该样本数据的中位数和平均数;

(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知平行四边形ABCD,对角线ACBD相交于点OOBC=OCB

(1)求证:平行四边形ABCD是矩形;

(2)请添加一个条件使矩形ABCD为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C,D是线段AB上的两点,已知AC:CD:DB=1:2:3,MN分别是AC,BD的中点,且AB=36cm,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.购买江苏省体育彩票有“中奖”与“不中奖”两种情况,所以中奖的概率是
B.国家级射击运动员射靶一次,正中靶心是必然事件
C.如果在若干次试验中一个事件发生的频率是 ,那么这个事件发生的概率一定也是
D.如果车间生产的零件不合格的概率为 ,那么平均每检查1000个零件会查到1个次品

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法中正确的个数是( )

①AD是∠BAC的平分线; ②∠ADC=60°;

③点D在线段ABC的垂直平分线上; ④BD=2CD.

A. 2个 B. 3个 C. 1个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连接AC,作AC的垂直平分线MN分别交ADACBCMON,连接ANCM,则四边形ANCM是菱形.

乙:分别作∠A∠B的平分线AEBF,分别交BCADEF,连接EF,则四边形ABEF是菱形.根据两人的作法可判断( )

A. 甲正确,乙错误 B. 乙正确,甲错误

C. 甲、乙均正确 D. 甲、乙均错误

查看答案和解析>>

同步练习册答案