精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,已知一次函数y=﹣x+6与x,y轴分别交于A,B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,点B刚好落在x轴上,则点C的坐标是(  )

A. (0,3) B. (0, C. (0, D. (0,

【答案】C

【解析】

CCDABD,先求出A,B的坐标,分别为A(8,0),B(0,6),得到AB的长,再根据折叠的性质得到AC平分∠OAB,得到CD=CO=n,DA=OA=8,则DB=10-8=2,BC=6-n,在RtBCD中,利用勾股定理得到n的方程,解方程求出n即可.

CCDABD,如图,

对于直线y=x+6,

x=0,得y=6;当y=0,x=8,

A(8,0),B(0,6),即OA=8,OB=6,

AB=10,

又∵坐标平面沿直线AC折叠,使点B刚好落在x轴上,

AC平分∠OAB,

CD=CO=n,则BC=6n,

DA=OA=8,

DB=108=2,

RtBCD,DC2+BD2=BC2

n2+22=(6n)2,解得n=

∴点C的坐标为(0,).

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图已知线段ABCD的公共部分BD=AB= CD线段ABCD的中点EF之间距离是10cmABCD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.

(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;

(2)如图2,若BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为xx大于0)秒.

(1)点C表示的数是   

(2)当x=   秒时,点P到达点A处?

(3)运动过程中点P表示的数是   (用含字母x的式子表示);

(4)当PC之间的距离为2个单位长度时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于有理数a、b,定义运算:ab=a×b-a-b+1.

(1)计算5(-2)与(-2)5的值,并猜想abba的大小关系;

(2)求(-3) [4(-2)]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.

(1)点(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;

(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1:y=kx+b平行于直线y=x﹣1,且与直线l2 相交于点P(﹣1,0).

(1)求直线l1、l2的解析式;
(2)直线l1与y轴交于点A.一动点C从点A出发,先沿平行于x轴的方向运动,到达直线l2上的点B1处后,改为垂直于x轴的方向运动,到达直线l1上的点A1处后,再沿平行于x轴的方向运动,到达直线l2上的点B2处后,又改为垂直于x轴的方向运动,到达直线l1上的点A2处后,仍沿平行于x轴的方向运动,…
照此规律运动,动点C依次经过点B1 , A1 , B2 , A2 , B3 , A3 , …,Bn , An , …
①求点B1 , B2 , A1 , A2的坐标;
②请你通过归纳得出点An、Bn的坐标;并求当动点C到达An处时,运动的总路径的长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于第二、四象限内的A、B两点,与y轴交于C点,过A作AH⊥y轴于H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).
(1)求△AHO的周长;
(2)求反比例函数和一次函数的解析式.

查看答案和解析>>

同步练习册答案