分析 (1)根据角平分线的定义得到∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ACE,∠BAC+∠ABC=∠ACE,于是得到∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ABC,等量代换即可得到结论;
(2)作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H根据角平分线的性质得到DM=DH,DN=DH,等量代换得到DM=DN,根据三角形的内角和得到∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,推出∠GAD+∠CAD=∠ABC+∠ACB,由等腰三角形的性质得到∠ABC=∠ACB,等量代换得到∠GAD=∠ABC,推出AD∥BC,由平行线的性质得到∠ADB=∠DBC,证得∠ABD=∠ADB,即可得到结论;
(3)根据等腰三角形的性质得到∠BAF=∠ABF=$\frac{1}{2}$∠ABC,根据三角形的内角和即可得到结论.
解答
解:(1)∵BD、CD分别平分∠EBA、∠ECA,BD交AC于F,
∴∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ACE,∠BAC+∠ABC=∠ACE,
∴∠BDC+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ABC,
∴∠BDC=$\frac{1}{2}$∠BAC.
(2)△ABD为等腰三角形,证明如下:
作DM⊥BG于M,DN⊥AC于N,DH⊥BE于H
∵BD、CD分别平分∠EBA、∠ECA,
∴DM=DH,DN=DH,
∴DM=DN,
∴AD平分∠CAG,即∠GAD=∠CAD,
∵∠GAD+∠CAD+∠BAC=180°,∠BAC+∠ABC+∠ACB=180°,
∴∠GAD+∠CAD=∠ABC+∠ACB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠GAD=∠ABC,
∴AD∥BC,
∴∠ADB=∠DBC,
又∵∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD,
∴△ABD为等腰三角形;
(3)∵AF=BF,
∴∠BAF=∠ABF=$\frac{1}{2}$∠ABC,
∵∠BAF+∠ABC+∠ACB=180°,∠ABC=∠ACB,
∴$\frac{5}{2}$∠ABC=180°,
∴∠ABC=72°.
点评 本题考查了等腰三角形的判定和性质,角平分线的性质,三角形的内角和,三角形的外角的性质,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x+2=2x(x+2) | B. | x+2(x2-4)=2x(x+2) | C. | x+2(x-2)=2x(x-2) | D. | x+2(x2-4)=2x(x-2) |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com