精英家教网 > 初中数学 > 题目详情

【题目】如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行30米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长.(注:不计小明的身高,结果精确到1米,参考数据1.41.7

【答案】宣传条幅BC的长约为26米.

【解析】

由∠EBF=BEC-F=60°-30°=30°知∠EBF=F=30°,据此得BE=EF=30(米),再根据BC=BEsin60°求解可得.

∵∠EBF=BEC-F=60°-30°=30°

∴∠EBF=F=30°

BE=EF=30(米),

RtBCE中,sin60°=

BC=BEsin60°=30×≈26(米),

答:宣传条幅BC的长约为26米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图是yax2+2x1的图象,那么ax2+2x10的根可能是下列哪幅图中抛物线与直线的交点横坐标(  )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:抛物线轴交于两点,与轴交于点,点为顶点,连接,抛物线的对称轴与轴交与点

1)求抛物线解析式及点的坐标;

2G是抛物线上之间的一点,且,求出点坐标;

3)在抛物线上之间是否存在一点,过点,交直线于点,使以为顶点的三角形与相似?若存在,求出满足条件的点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019218日,《感动中国2018年度人物颁奖盛典》在央视综合频道播出,其中乡村教师张玉滚的事迹令人非常感动某校团委组织“支援乡村教育,帮助教师张玉滚”的捐款活动,以下为九年级(1)班捐款情况:

捐款金额(元)

5

10

20

50

人数(人)

12

13

16

11

则这个班学生捐款金额的中位数和众数分别为(

A.1550B.2020C.1020D.2050

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P CH 的中点,则APH 的周长为(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,

点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若ADE

的面积为3,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数yax2+bx+c的图象经过点A(10)、点B(30)、点C(4y1),若点D(x2y2)是抛物线上任意一点,有下列结论:

①二次函数yax2+bx+c的最小值为﹣4a

②若﹣1≤x2≤4,则0≤y2≤5a

③若y2y1,则x24

④一元二次方程cx2+bx+a0的两个根为﹣1

其中正确结论的是_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点C.

(1)利用直尺和圆规,作出抛物线y=x2+mx+n的对称轴(尺规作图,保留作图痕迹,不写作法);

(2)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;

(3)在(2)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB10cmE为对角线BD上一动点,连接AECE,过E点作EFAE,交直线BC于点FE点从B点出发,沿着BD方向以每秒2cm的速度运动,当点E与点D重合时,运动停止.设△BEF的面积为ycm2E点的运动时间为x秒.

1)求证:CEEF

2)求yx之间关系的函数表达式,并写出自变量x的取值范围;

3)求△BEF面积的最大值.

查看答案和解析>>

同步练习册答案