精英家教网 > 初中数学 > 题目详情
1.解方程:$\frac{1}{{x}^{2}-x}$+$\frac{1}{{x}^{2}+x}$+$\frac{1}{{x}^{2}+3x+2}$=$\frac{4}{{x}^{2}+2x-3}$.

分析 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:方程变形得:$\frac{1}{x(x-1)}$+$\frac{1}{x(x+1)}$+$\frac{1}{(x+1)(x+2)}$-$\frac{4}{(x-1)(x+3)}$=0,
即$\frac{1}{x-1}$-$\frac{1}{x}$+$\frac{1}{x}$-$\frac{1}{x+1}$+$\frac{1}{x+1}$-$\frac{1}{x+2}$-$\frac{1}{x-1}$+$\frac{1}{x+3}$=0,
整理得:$\frac{1}{x+3}$-$\frac{1}{x+2}$=0,
去分母得:x+2-x-3=0,即-1=0,矛盾,
则此分式方程无解.

点评 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.在长为(3a+2)、宽为(2a+3)的长方形铁皮上剪去一个边长为(a-1)的小正方形,则剩余部分的面积为5a2+15a+5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.认真思考,回答下列问题:
(1)由2a+3=2b-3能不能得到a=b?为什么?
(2)由10a=12能不能得到5a=6?为什么?
(3)由5ab=6b能不能得到5a=6?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为-200,B点对应的数为-20,C点对应的数为40.甲从C点出发,以6单位/秒的速度向左运动.
(1)当甲在B点、C点之间运动时,设运时间为x秒,请用x的代数式表示:
甲到A点的距离:240-6x;
甲到B点的距离:40-6x;
甲到C点的距离:6x.
(2)当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向右运动,设两人在数轴上的D点相遇,求D点对应的数;
(3)若当甲运动到B点时,乙恰好从A点出发,以4单位/秒的速度向左运动,设两人在数轴上的E点相遇,求E点对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.计算(1+2+…+n-1)(2+3+…+n)-(2+3+…n-1)•(1+2+…+n)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线的对称轴为直线l:x=4,且与x轴交于点A(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)试探究在此抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径作⊙M,过点C作直线CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-2,与x轴交于A、B两点,与y轴交于点C,其中A(-6,0),C(0,-4).
(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标.
(3)在第(2)问的基础上,若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,抛物线y=-$\frac{3}{8}{x}^{2}-\frac{3}{4}x+3$与x轴交于A,B两点,与y轴交于点C.
(1)求点A,B的坐标;
(2)设D为抛物线的对称轴上的任意一点,当△ACD的面积等于△ABC的面积时,求点D的坐标;
(3)设点M为抛物线上一点,且以A,B,C,M为顶点是四边形为梯形,请直接写出所有符合要求的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,直角梯形OABC的直角顶点O是坐标原点,PA,OC分别在x轴、y轴正半轴上,OA∥BC,D是BC上一点,BD=$\frac{1}{4}OA$=$\sqrt{2}$,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF时等腰三角形时,求出△AEF的面积.

查看答案和解析>>

同步练习册答案