【题目】如图,∠AOB=45°,过OA上到点O的距离分别为1,3,5,7,9,11,的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为S1,S2,S3,S4,…,观察图中的规律,求出第10个黑色梯形的面积S10=_____.
【答案】76
【解析】
仔细观察可发现规律:第n个黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,然后按此公式求得上下底,再利用面积公式计算面积就行了.
解法①:从图中可以看出,第一个黑色梯形的上底为1,下底为3,第2个黑色梯形的上底为5=1+4,下底为7=1+4+2,第3个黑色梯形的上底为9=1+2×4,下底为11=1+2×4+2,则第n个黑色梯形的上底=1+(n﹣1)×4,下底=1+(n﹣1)×4+2,
∴第10个黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39,
∴第10个黑色梯形面积S10=×(37+39)×2=76.
解法②根据图可知:
S1=4,
S2=12,
S3=20,
以此类推得Sn=8n﹣4,
S10=8×10﹣4=76.
科目:初中数学 来源: 题型:
【题目】如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,可得到△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1,则△AnCnCn+1的周长为_______(n≥1,且n为整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
弹簧总长L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是( )
A.22.5B.25C.27.5D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=-x2+bx+C的图象与坐标轴交于A、B、C三点,其中点A的坐标为(0,8),点B的坐标为(-4,0).
(1)求该二次函数的表达式及点C的坐标;
(2)点D的坐标为(0,4),点F为该二次函数在第一象限内图象上的动点,连接CD、CF,以CD、CF为邻边作平行四边形CDEF,设平行四边形CDEF的面积为S.
①求S的最大值;
②在点F的运动过程中,当点E落在该二次函数图象上时,请直接写出此时S的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某风景区内有一瀑布,AB表示瀑布的垂直高度,在与瀑布底端同一水平位置的点D处测得瀑布顶端A的仰角β为45°,沿坡度i=1:3的斜坡向上走100米,到达观景台C,在C处测得瀑布顶端A的仰角α为37°,若点B、D、E在同一水平线上.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,≈1.41,≈3.16)
(1)观景台的高度CE为 米(结果保留准确值);
(2)求瀑布的落差AB(结果保留整数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.
(1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,四边形是正方形,点为正方形对角线的交点,点,点,点.分别延长到,到,使,,再以,为邻边作平行四边形.
(Ⅰ)求点的坐标;
(Ⅱ)如图②,将四边形绕点逆时针旋转得四边形,点,,旋转后的对应点分别为,,,旋转角为.
①旋转过程中,当时,求点的坐标;
②在旋转过程中,求的取值范围(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年由于防控疫情,师生居家隔离线上学习,AB和CD是社区两栋邻楼的示意图,小华站在自家阳台的C点,测得对面楼顶点A的仰角为30°,地面点E的俯角为45°.点E在线段BD上.测得B,E间距离为8.7米.楼AB高12米.求小华家阳台距地面高度CD的长(结果精确到1米,1.41,1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫站的距离为(单位:km),乘坐地铁的时间(单位:min)是关于的一次函数,其关系如下表:
地铁站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求关于的函数解析式;
(2)李华骑单车的时间(单位:min)也受的影响,其关系可以用=2-11+78来描述.求李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需的时间最短,并求出最时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com