【题目】计算:
(1)(-1)-(-3)
(2)
(3)[(-56)×()+]
(4)
科目:初中数学 来源: 题型:
【题目】杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出x的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元,若能,求出第二年产品售价;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:数轴上有、两点,分别对应的数为,,已知与互为相反数,点为数轴上一动点,对应为.
(1)若点到点和点的距离相等,求点对应的数;
(2)数轴上是否存在点,使点到点和点的距离之和为5?若存在,请求出的值,若不存在,请说明理由;
(3)当点以每分钟1个单位长度的速度从点向左运动,点以每分钟5个单位长度向左运动,点以每分钟20个单位长度的速度向左运动,问几分钟时点到点、点的距离相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、……、An-1PnAnBn都是正方形,对角线OA1、A1A2、A2A3、……、An-1An都在y轴上(n≥2),点P1(x1,y1),点P2(x2,y2),……,点Pn(xn,yn)在反比例函数y= (x>0)的图象上,已知B1 (-1,1)。
(1)反比例函数解析式为________;
(2)求点P1和点P2的坐标;
(3)点Pn的坐标为(____________)(用含n的式子表示),△PnBnO的面积为__________。(直接填答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点在数轴上对应的数为,点对应的数为,为原点,且、满足:.试解答下列问题:
(1)求数轴上线段的长度;
(2)若点以每秒2个单位长度的速度沿数轴向右运动,则经过秒后点表示的数为 ;(用含的代数式表示)
(3)若点,都以每秒2个单位长度的速度沿数轴向右运动,而点不动,经过秒后其中一个点是一条线段的中点,求此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(I)根据题意,填写下表:
游泳次数 | 10 | 15 | 20 | … | x |
方式一的总费用(元) | 150 | 175 | ______ | … | ______ |
方式二的总费用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新规定:点为线段上一点,当或时,我们就规定为线段的“三倍距点”。如图,在数轴上,点所表示的数为-3,点所表示的数为5.
(1)确定点所表示的数为___________.
(2)若动点从点出发,沿射线方向以每秒2个单位长度的速度运动,设运动时间为秒.
①当点与点重合时,求的值.
②求的长度(用含的代数式表示).
③当点为线段的“三倍距点”时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度( )
A. 逐渐增加 B. 逐渐减小
C. 保持不变且与EF的长度相等 D. 保持不变且与AB的长度相等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com