精英家教网 > 初中数学 > 题目详情

【题目】新房装修后,某居民购买家用品的清单如下表,因污水导致部分信息无法识别,根据下表解决问题:

家居用品名称

单价(元)

数量(个

金额(元)

垃圾桶

15

鞋架

40

字画

a

2

90

合计

5

185

(1)居民购买垃圾桶,鞋架各几个

(2)若居民再次购买字画和垃圾桶两种家居用品共花费150元,则有哪几种不同的购买方案?

【答案】(1)居民购买垃圾桶1个,鞋架2个(2)有三种不同的购买方案

【解析】试题分析:(1设居民购买垃圾桶x个,鞋架y个,找出数量和金额的等量关系,列方程组求解即可.

2)设购买字画a个,购买垃圾桶b个,先求出字画的单价,根据购买字画和垃圾桶两种家居用品共花费150元,列出式子,化简得求出方程的正整数解即可.

试题解析:(1设居民购买垃圾桶x个,鞋架y

解得:

答:居民购买垃圾桶1个,鞋架2个;

2)设购买字画a个,购买垃圾桶b

字画单价为90÷2=45

a=1时,b=7

a=2时,b=4

a=3时,b=1

即有三种不同的购买方案:

第一种方案是:购买字画1个,购买垃圾桶7个;

第二种方案是:购买字画2个,购买垃圾桶4个;

第三种方案是:购买字画3个,购买垃圾桶1个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.

(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系.

(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.

(3)当点M、N分别在AB、AC上运动时,四边形AMON的面积是否发生变化?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y(单位:米)与小刚打完电话后的步行时间t(单位:分)之间的函数关系如图,下列四种说法:
①打电话时,小刚和妈妈的距离为1250米;
②打完电话后,经过23分钟小刚到达学校;
③小刚和妈妈相遇后,妈妈回家的速度为150米/分;
④小刚家与学校的距离为2550米.其中正确的个数是( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨 .下表是去年该酒店豪华间某两天的相关记录:

淡季

旺季

未入住房间数

10

0

日总收入(元)

24000

40000


(1)该酒店豪华间有多少间?旺季每间价格为多少元?
(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:(-1)3-×[2-(-3)2]

(2) 计算:(12)+(+30)(+65)(47)

(3) 计算:39×(12)

(4) 计算:(1000)×(+0.1)

(5)化简:﹣4(a33b)+(2b2+5a3)

(6)化简:2a2(0.5a+3bc)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,则△AFC的面积S为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x
②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2

查看答案和解析>>

同步练习册答案