【题目】如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为______.
科目:初中数学 来源: 题型:
【题目】问题发现:(1)如图1,与同为等边三角形,连接则与的数量关系为________;直线与所夹的锐角为_________;
类比探究:(2)与同为等腰直角三角形,其他条件同(1),请问(1)中的结论还成立吗?请说明理由;
拓展延伸:(3)中,为的中位线,将绕点逆时针自由旋转,已知,在自由旋转过程中,当在一条直线上时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.
⑴问乙单独整理多少分钟完工?
⑵若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与轴交于点,抛物线经过、两点.
(1)求抛物线的解析式;
(2)点为抛物线在第二象限内一点,并且在对称轴的左边,过点作轴的垂线,垂足为点,与直线交于点,过点作轴的平行线交抛物线于点,过点作轴的垂线,垂足为点,设点的横坐标为.
①当矩形的周长最大时,求的面积;
②在①的条件下,当矩形的周长最大时,是直线上一点,是抛物线上一点,是否存在点,使得以点、、、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=﹣x+2与x轴,y轴分别交于A,B两点,以A为顶点的抛物线经过点B,点P是抛物线上一点,连接OP,AP.
(1)求抛物线的解析式;
(2)若△AOP的面积是3,求P点坐标;
(3)如图②,动点M,N同时从点O出发,点M以1个单位长度/秒的速度沿x轴正半轴方向匀速运动,点N以个单位长度/秒的速度沿y轴正半轴方向匀速运动,当其中一个动点停止运动时,另一个动点也随之停止运动,过点N作NE∥x轴交直线AB于点E.若设运动时间为t秒,是否存在某一时刻,使四边形AMNE是菱形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一种手机自拍杆,杆体从上至下分别由手机夹架、多节套管和可升降支架脚连接而成.使用时通过自由伸缩套管调节自拍杆的长度,同时可以通过调节支架脚使拍摄时更灵活安全.图2是其正面简化示意图,手机(为矩形)与其下方套管连接于点E,E为的中点,,支架脚,与地面平行,.
(1)当时,求点E到地面的高度;
(2)若在某环境中拍摄时,调节支架脚使,若,求点G到直线与交点的距离.
(参考数据:,结果精确到)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com