精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD的边长为4,点E、F分别在边AB、BC上,且AE=BF=1,CE、DF交于点O.下列结论:①∠DOC=90°,②OC=OE,③tan∠OCD= ,④SODC=S四边形BEOF中,正确的有( )
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:

∵正方形ABCD的边长为4,
∴BC=CD=4,∠B=∠DCF=90°,
∵AE=BF=1,
∴BE=CF=4﹣1=3,
在△EBC和△FCD中,

∴△EBC≌△FCD(SAS),
∴∠CFD=∠BEC,
∴∠BCE+∠BEC=∠BCE+∠CFD=90°,
∴∠DOC=90°;
故①正确;
若OC=OE,
∵DF⊥EC,
∴CD=DE,
∵CD=AD<DE(矛盾),
故②错误;
∵∠OCD+∠CDF=90°,∠CDF+∠DFC=90°,
∴∠OCD=∠DFC,
∴tan∠OCD=tan∠DFC= =
故③正确;
∵△EBC≌△FCD,
∴SEBC=SFCD
∴SEBC﹣SFOC=SFCD﹣SFOC
即SODC=S四边形BEOF
故④正确.
故选C.
由正方形ABCD的边长为4,AE=BF=1,利用SAS易证得△EBC≌△FCD,然后全等三角形的对应角相等,易证得①∠DOC=90°正确;②由线段垂直平分线的性质与正方形的性质,可得②错误;易证得∠OCD=∠DFC,即可求得③正确;由①易证得④正确.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1和2,四边形ABCD是菱形,点P是对角线AC上一点,以点P为圆心,PB为半径的弧,交BC的延长线于点F,连接PF,PD,PB.

(1)如图1,点P是AC的中点,请写出PF和PD的数量关系:

(2)如图2,点P不是AC的中点,
①求证:PF=PD.
②若∠ABC=40°,直接写出∠DPF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农户承包果树若干亩,今年投资元,收获水果总产量为千克.此水果在市场上每千克售元,在果园直接销售每千克售.该农户将水果拉到市场出售平均每天出售千克,需人帮忙,每人每天付工资元,农用车运费及其他各项税费平均每天元.

分别用含的代数式表示两种方式出售水果的收入.

元,元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.

该农户加强果园管理,力争到明年纯收入达到元,而且该农户采用了中较好的出售方式出售,那么纯收入增长率是多少(纯收入总收入-总支出)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:直线与双曲线交于A.B两点,且点A的横坐标为4, 若双曲线上一点C的纵坐标为8,连接AC.

(1)填空: k的值为_______; B的坐标为___________;C的坐标为___________.

(2)直接写出关于的不等式的解集.

(3)求三角形AOC的面积

(4) 若在x轴上有点My轴上有点N且点M.N.A.C四点恰好构成平行四边形,直接写出点M.N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】福鼎市南溪水库的警戒水位是,以下是南溪水库管理处七月份某周监测到的水位变化情况,上周末恰好达到警戒水位(正数表示比前一天水位高,负数表示比前一天水位低).

星期

水位变化

星期四的水位是多少?

从这周一到周日哪天的水位是最高的?

以警戒水位为零点,用折线图表表示本周水位情况.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)

(1)画出△ABC向下平移4个单位得到的△A1B1C1 , 并直接写出C1点的坐标;
(2)以点B为位似中心,在网格中画出△A2BC2 , 使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示. 设点A,B,C所对应数的和是p.

(1)若以B为原点,则点A,C所对应的数为 ,p的值为 若以C为原点,p 的值为

(2)若原点O在图中数轴上点C的右边,且CO=28,求p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直角梯形ABCD中,AD∥BC∠ADC=90°AD=8BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点NNP⊥AD于点P,连接ACNP于点Q,连接MQ.设运动时间为t秒.

1AM= AP= .(用含t的代数式表示)

2)当四边形ANCP为平行四边形时,求t的值

3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t

使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由

使四边形AQMK为正方形,则AC=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面推理过程

如图,已知DEBCDFBE分别平分∠ADEABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DFBE分别平分∠ADEABC

∴∠ADF=      

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

同步练习册答案