【题目】如图,在中,,于点,点为中点,连接交于点,且,过点作,交于点.
(1)求的大小;
(2)求证:.
【答案】(1)∠CAD =22.5°;(2)见解析.
【解析】
(1)只要证明△BDF≌△ADC,推出BD=AD,推出∠BAD=∠ABD=45°=2∠CBE=2∠DAC即可解决问题.
(2)延长BE、DG交于点K.证明DK=BD=AD, GK=AF后可以证明Rt△AEF≌Rt△KEG,问题即可解决.
证明:(1)∵AD⊥BC,
∴∠ADC=90°
∵AB=BC,E为AC中点,
∴∠ABE=∠CBE= ∠ABC,BE⊥AC,
∴∠BEC=90°,
∴180°-∠C-∠ADC=180°-∠C-∠BEC
即∠CBE=∠CAD,
在△BDF和△ADC中,
,
∴△BDF≌△ADC,
∴BD=AD,
∴∠BAD=∠ABD=45°,∠CBE=∠DAC,
∴∠CAD=∠ABD=22.5°.
(2)延长BE、DG交于点K.
∵DG∥AB,
∴∠CGD=∠CAB,∠K=∠ABE,
∵∠BAC=∠C, ∠ABE=∠CBE=∠EAF
∴∠CGD=∠C,∠K=∠CBE =∠EAF
∴DG=DC,DK=BD,
∴△BDF≌△ADC,
∴CD=DF,
∴DG=DF,DK=BD=AD,
∴DK-DG=AD-DF,
即GK=AF
在Rt△AEF和Rt△KEG中
,
∴Rt△AEF≌Rt△KEG(AAS),
∴EF=EG.
科目:初中数学 来源: 题型:
【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
(1)求此抛物线的表达式;
(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的部分图象如图所示,则下列结论中正确的是( )
A. a>0
B. 不等式ax2+bx+c>0的解集是﹣1<x<5
C. a﹣b+c>0
D. 当x>2时,y随x的增大而增大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了一部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.
(1)这次一共调查的学生人数是_______人;
(2)所调查学生读书本数的众数是_______本,中位数是_______本.
(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线,与和分别相切于点和点.点和点分别是和上的动点,沿和平移.的半径为,.下列结论错误的是( )
A. B. 和的距离为
C. 若,则与相切 D. 若与相切,则
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,假分数可以化为整数与真分数的和的形式,例如:.
在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.
例如:像,,…这样的分式是假分式;像,,…这样的分式是真分式.
类似的,假分式也可以化为整式与真分式的和(差)的形式.
例如:将分式拆分成一个整式与一个真分式的和(差)的形式.
方法一:解:由分母为,可设
则由
对于任意,上述等式均成立,
∴,解得
∴
这样,分式就被拆分成一个整式与一个真分式的和(差)的形式.
方法二:解:
这样,分式就拆分成一个整式与一个真分式的和(差)的形式.
(1)请仿照上面的方法,选择其中一种方法将分式拆分成一个整式与一个真分式的和(差)的形式;
(2)已知整数使分式的值为整数,求出满足条件的所有整数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=BC,点O是斜边AB的中点,将边长足够大的三角板的直角顶点放在点O处,将三角板绕点O顺时针旋转一个角度α(0°<α<90°),记三角板的两直角边与Rt△ABC的两腰AC、BC的交点分别为E、D,四边形CEOD是旋转过程中三角板与△ABC的重叠部分(如图①所示).那么,在上述旋转过程中:
(1)线段CE与BD具有怎样的数量关系?四边形CEOD的面积是否发生变化?证明你发现的结论;
(2)当三角尺旋转角度为____________时,四边形CEOD是矩形;
(3)若三角尺继续旋转,当旋转角度α(90°<α<180°)时,三角尺的两边与等腰Rt△ABC的腰CB和AC的延长线分别交于点D、E(如图②所示). 那么线段CE与BD的数量关系还成立吗?若成立,给予证明;若不成立,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生外出社会实验活动,为了提前做好准备工作,学校安排小车送义工队前往,同时其余学生乘坐客车去目的地,小车到达目的地后立即返回,客车在目的地等候,如图是两车距学校的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)填空:目的地距离学校 千米,小车出发去目的地的行驶速度是 千米/时;
(2)当两车行驶3小时后在途中相遇,求点P的坐标;
(3)在第(2)题的条件下,求客车到达目的地所用时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2-4x+7与y=x交于A、B两点(点A在点B左侧).
(1)求A、B两点坐标;
(2)求抛物线顶点C的坐标,并求△ABC面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com