【题目】如图,直线y=﹣2x+6与x轴,y轴分别交A,B两点,点A关于原点O的对称点是点C,动点E从A出发以每秒1个单位的速度运动到点C,点D在线段OB上满足tan∠DEO=2,过E点作EF⊥AB于点F,点A关于点F的对称点为点G,以DG为直径作⊙M,设点E运动的时间为t秒;
(1)当点E在线段OA上运动,t= 时,△AEF与△EDO的相似比为1:
;
(2)当⊙M与y轴相切时,求t的值;
(3)若直线EG与⊙M交于点N,是否存在t使NG=
,若存在,求出t的值;若不存在,说明理由.
![]()
【答案】(1)
;(2)t=
或5;(3)存在,t=
或
或
.
【解析】
(1)先求直线与坐标轴的交点坐标,再证△AEF∽△EDO∽△ABO,由△AEF与△EDO的相似比为1:
,即可求得t的值;
(2)由⊙M与y轴相切可知:DG⊥y轴,分两种情况:0≤t≤3或3<t≤6,分别由D、G的纵坐标相等建立方程求解即可;
(3)分三种情况:0≤t≤
或
<t≤3或3<t≤6,分别建立方程求解即可.
解:(1)在y=﹣2x+6中,令x=0,得:y=6,
令y=0,得:﹣2x+6=0,
解得:x=3,
∴A(3,0),B(0,6),C(﹣3,0)
∴OA=3,OB=6,AB=3
,AE=t,OE=3﹣t,
∴tan∠BAO=
=2
∵tan∠DEO=2
∴∠BAO=∠DEO
∵EF⊥AB
∴∠AFE=∠DOE=90°
∴△AEF∽△EDO∽△ABO
,即![]()
∴AF=
t;
∵△AEF与△EDO的相似比为1:
,
∴
,即OE=
AF
∴3﹣t=
×
t,
解得:t=
;
故答案为:t=
;
(2)∵⊙M与y轴相切
∴DG⊥y轴
当0≤t≤3时,![]()
∵tan∠DEO=2
∴![]()
∴![]()
∵
,△AEF∽△ABO
∴![]()
∴![]()
∵点A、G关于点F对称
∴![]()
∴![]()
将
代入
中,得,![]()
解得
,
∴G(3﹣
t,
t),D(0,6﹣2t),
∴
t=6﹣2t,解得:t=
;
当3<t≤6时,同理得G(3﹣
t,
t),D(0,2t﹣6),
∴
t=2t﹣6,解得:t=5,
综上所述,当⊙M与y轴相切时,t=
或5;
(3)存在.
当0≤t≤
时,G(3﹣
t,
t),D(0,6﹣2t),
∵点A关于点F的对称点为点G,EF⊥AB
∴EG=EA=t
∵∠OEG=∠OAB+∠EGA=2∠OAB,∠OED=∠OAB
∴∠GED=∠OED=∠OAB
∵DG为直径
∴∠DNG=∠DNE=∠DOE=90°,DE=DE
∴△DEN≌△DEO(AAS)
∴EN=OE=3﹣t,NG=EN﹣EG=3﹣t﹣t=3﹣2t,
∴3﹣2t=
,
解得:t=
,
当
<t≤3时,NG=EG﹣EN=t﹣(3﹣t)=2t﹣3
∴2t﹣3=
,
解得:t=
;
当3<t≤6时,如图2,连接DN,过G作GH⊥x轴于H,
∵DG是直径,
∴∠DNG=∠DNE=90°,
∵∠DMN=∠EMO
∴△DMN∽△EMO
∴∠MDN=∠OEM
∵GH∥y轴
∴
,即
,
由(2)得
,
∵
轴,
∴
,
,
∴
,
∴DM=OD﹣OM=2(t﹣3)﹣
(t﹣3)=
(t﹣3)
∵tan∠OEM=![]()
∴EM=
OE=
(t﹣3),
∴sin∠OEM=
=
=sin∠MDN=
∴MN=
×
(t﹣3)=
(t﹣3)
∴NG=EG﹣EM﹣MN=t﹣
(t﹣3)﹣
(t﹣3)=
﹣
t,
∴
,
解得:t=
;
综上所述,t=
或
或
.
![]()
![]()
科目:初中数学 来源: 题型:
【题目】小明家所在居民楼的对面有一座大厦AB,高为74米,为测量居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.
![]()
(1)求∠ACB的度数;
(2)求小明家所在居民楼与大厦之间的距离.(参考数据:sin37°≈
,cos37°≈
,tan37°≈
,sin48°≈
,cos48°≈
,tan48°≈
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰Rt△ABC的直角边长为4,以A为圆心,直角边AB为半径作弧BC1,交斜边AC于点C1,C1B1⊥AB于点B1,设弧BC1,C1B1,B1B围成的阴影部分的面积为S1,然后以A为圆心,AB1为半径作弧B1C2,交斜边AC于点C2,C2B2⊥AB于点B2,设弧B1C2,C2B2,B2B1围成的阴影部分的面积为S2,按此规律继续作下去,得到的阴影部分的面积S3=_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=
x+6与反比例函数y=
(k>0)的图象交于点M、N,与x轴、y轴分别交于点B、A,作ME⊥x轴于点E,NF⊥x轴于点F,过点E、F分别作EG∥AB,FH∥AB,分别交y轴于点G、H,ME交HF于点K,若四边形MKFN和四边形HGEK的面积和为12,则k的值为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)
(1)若已知CD=20米,求建筑物BC的高度;
(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题提出
(1)如图①,在△ABC中,AB=AC=10,BC=12,点O是△ABC的外接圆的圆心,则OB的长为
问题探究
(2)如图②,已知矩形ABCD,AB=4,AD=6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;
问题解决
(3)某地有一块如图③所示的果园,果园是由四边形ABCD和弦CB与其所对的劣弧场地组成的,果园主人现要从入口D到
上的一点P修建一条笔直的小路DP.已知AD∥BC,∠ADB=45°,BD=120
米,BC=160米,过弦BC的中点E作EF⊥BC交
于点F,又测得EF=40米.修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.
(1)求直线y=3与抛物线交点的坐标;
(2)将矩形ABCD以每秒1个单位长度的速度从图⑴所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图(2)所示).
![]()
①当
时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com