【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离(米)与时间(分钟)之间的函数关系如图所示.其中说法正确的是( )
A.甲的速度是60米/分钟B.乙的速度是80米/分钟
C.点的坐标为D.线段所表示的函数表达式为
【答案】D
【解析】
根据图象信息,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;由甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再根据“路程、时间与速度”的关系解答即可;求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式.
解:A、根据图象信息,甲的速度为2400÷60=40米/分钟,故A选项错误;
B、∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100-40=60米/分钟,B选项错误;
C、乙从图书馆回学校的时间为2400÷60=40分钟,
40×40=1600,
∴A点的坐标为(40,1600),故C选项错误;
D、设线段AB所表示的函数表达式为y=kt+b,
∵A(40,1600),B(60,2400),
∴,
解得:,
∴线段所表示的函数表达式为,故D选项正确;
故选D.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(3,0),C(1,﹣1),AC交x轴于点P.
(1)∠ACB的度数为_____;
(2)P点坐标为______;
(3)以点O为位似中心,将△ABC放大为原来的2倍,请在图中画出所有符合条件的三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是△ABC的边AB上一点,点E为AC的中点,过点C作CF∥AB交DE延长线于点F.
(1)求证:AD=CF.
(2)连接AF,CD,求证:四边形ADCF为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.
(1)求证:四边形ADCE是平行四边形;
(2)当∠BAC=90°时,求证:四边形ADCE是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】蔬菜基地种植了娃娃菜和油菜两种蔬菜共亩,设种植娃娃菜亩,总收益为万元,有关数据见下表:
成本(单位:万元/亩) | 销售额(单位:万元/亩) | |
娃娃菜 | 2.4 | 3 |
油菜 | 2 | 2.5 |
(1)求关于的函数关系式(收益 = 销售额 – 成本);
(2)若计划投入的总成本不超过万元,要使获得的总收益最大,基地应种植娃娃菜和油菜各多少亩?
(3)已知娃娃菜每亩地需要化肥kg,油菜每亩地需要化肥kg,根据(2)中的种植亩数,基地计划运送所需全部化肥,为了提高效率,实际每次运送化肥的总量是原计划的倍,结果运送完全部化肥的次数比原计划少次,求基地原计划每次运送多少化肥.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,点为坐标原点,直线分别交轴,轴于点,,点在第一象限,连接,,四边形是正方形.
(1)如图1,求直线的解析式;
(2)如图2,点分别在上,点关于轴的对称点为点,点在上,且,连接,,设点的横坐标为,的面积为,求与之间的函数关系式,并直接写出自变量的取值范围;
(3)如图3,在(2)的条件下,连接,,,点在上,且,点在上,连接交于点,,且,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),AB=CD,AD=BC,O为AC中点,过O点的直线分别与AD、BC相交于点M、N,那么∠1与∠2有什么关系?请说明理由;
若过O点的直线旋转至图(2)、(3)的情况,其余条件不变,那么图(1)中的∠1与∠2的关系成立吗?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com