【题目】某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
【答案】
(1)解:设购买甲种鱼苗x尾,则购买乙种鱼苗(6000﹣x)尾.
由题意得:0.5x+0.8(6000﹣x)=3600,
解方程,可得:x=4000,
∴乙种鱼苗:6000﹣x=2000,
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾
(2)解:设购买鱼苗的总费用为w,甲种鱼苗买了a尾,则购买乙种鱼苗(6000﹣a)尾.
则w=0.5a+0.8(6000﹣a)=﹣0.3a+4800,
由题意,有 a+ (6000﹣a)≥ ×6000,
解得:a≤2400,
在w=﹣0.3a+4800中,
∵﹣0.3<0,
∴w随a的增大而减少,
∴当a取得最大值时,w便是最小,
即当a=2400时,w最小=4080.
答:购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低
【解析】(1)0.5×甲种鱼的尾数+0.8×乙种鱼的尾数=3600;(2)关系式为:甲种鱼的尾数×0.9+乙种鱼的尾数×95%≥6000×93%.
科目:初中数学 来源: 题型:
【题目】2015年全国两会民生话题成为社会焦点,安庆市记者为了了解百姓“两会民生话题”的聚焦点,随机调查了安庆市部分市民,并对调查结果进行整理,绘制了如图所示的不完整的统计图表.
组别 | 焦点话题 | 频数(人数) |
A | 食品安全 | 80 |
B | 教育医疗 | m |
C | 就业养老 | n |
D | 生态环保 | 120 |
E | 其他 | 60 |
请根据图表中提供的信息解答下列问题:
(1)填空:m、n等于多少?扇形统计图中E组所占的百分比为多少?
(2)安庆市人口现有6200万人,请你估计其中关注D组话题的市民人数;
(3)若在这次接受调查的市民中,随机抽查一人,则此人关注C组话题的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某人准备设计平行四边形图案,拟以长为4cm,5cm,7cm的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如表(单位:秒):此题图片显示不全
一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 | 九 | 十 | |
甲种电子钟 | 1 | ﹣3 | ﹣4 | 4 | 2 | ﹣2 | 2 | ﹣1 | ﹣1 | 2 |
乙种电子钟 | 4 | ﹣3 | ﹣1 | 2 | ﹣2 | 1 | ﹣2 | 2 | ﹣2 | 1 |
(1)计算甲、乙两种电子钟走时误差的平均数;
(2)计算甲、乙两种电子钟走时误差的方差;
(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是( )
A.24.70kg
B.24.80kg
C.25.30kg
D.25.51kg
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知A(1,1)、B(3,5),要在y轴上找一点P,使得△PAB的周长最小,则点P的坐标为( )
A.(0,1)
B.(0,2)
C.( ,0)
D.(2,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com