【题目】某学校为了推进球类运动的普及,成立了多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整).请你根据图中提供的信息,解答下列问题:
(1)求扇形统计图中,“乒乓球”所对应的扇形的圆心角为度;
(2)请将条形统计图和扇形统计图补充完整;
(3)若该学校共有学生1600人,根据以上数据分析,试估计选择排球运动的同学约有多少人?
【答案】
(1)144
(2)∵本次调查的总人数为100÷25%=400(人),
∴乒乓球的人数:400×40%=160(人),篮球的人数:400﹣100﹣160﹣40=100(人),
篮球所占的百分比为: ×100%=25%,排球所占的百分比为: ×100%=10%,
如图所示:
(3)1600×10%=160(人),
∴若该学校共有学生1600人,根据以上数据分析,估计选择排球运动的同学约有160人.
【解析】解:(1)360°÷40%=144°, ∴扇形统计图中,“乒乓球”所对应的扇形的圆心角为144°,
所以答案是:144.
【考点精析】根据题目的已知条件,利用扇形统计图和条形统计图的相关知识可以得到问题的答案,需要掌握能清楚地表示出各部分在总体中所占的百分比.但是不能清楚地表示出每个项目的具体数目以及事物的变化情况;能清楚地表示出每个项目的具体数目,但是不能清楚地表示出各个部分在总体中所占的百分比以及事物的变化情况.
科目:初中数学 来源: 题型:
【题目】政府计划投资14万亿元实施东进战略.为了解民对东进战略的关注情况,佳佳随机采访部分民,并对采访情况制作了统计图表的一部分如下:
关注情况 | 频数 | 频率 |
A.高度关注 | m | 0.1 |
B.一般关注 | 200 | 0.5 |
C.不关注 | 60 | n |
D.不知道 | 100 | 0.25 |
(1)采访总人数为__ __人,m=__ __,n=__ __;
(2)补全统计图;
(3)估计在30 000名民中高度关注东进战略的人数约为 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】王老师、张老师、李老师(女),姚老师四位数学老师报名参加了临城片青年教师优秀课选拔赛,将通过抽签决定上课节次,抽签时女士优先
(1)先抽取的李老师不希望上第一节课,却偏偏抽到上第一节课的概率是;
(2)在李老师已经抽到上第一节课的条件下,求抽签结果中,王老师比姚老师先上课的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:探究一次函数y=kx+k+2(k是不为0常数)图象的共性特点,探究过程:小明尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k+2的图象一定经过定点(﹣1,2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把像这样的一次函数的图象定义为“点旋转直线”.已知一次函数y=(k+3)x+(k﹣1)的图象是“点选直线”
(1)一次函数y=(k+3)x+(k﹣1)的图象经过的顶点P的坐标是 .
(2)已知一次函数y=(k+3)x+(k﹣1)的图象与x轴、y轴分别相交于点A、B
①若△OBP的面积为3,求k值;
②若△AOB的面积为1,求k值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E、F分别是AB、DC边上的点,且AE=CF,
(1)求证:△ADE≌△CBF.
(2)若∠DEB=90°,求证:四边形DEBF是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以 cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动,设点P运动的时间为ts.
(1)点P由A点运动到C点需要秒;
(2)当P异于A、C时,请说明PQ∥BC;
(3)以P为圆心、PQ长为半径作圆,请问:在运动过程中,⊙P与边BC有2个公共点时t的取值范围?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4 ,cos∠ACH= ,点B的坐标为(4,n)
(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D 为 AB的中点.
(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.
①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com