分析 (1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;
(2)根据圆周角定理和圆心角、弧、弦之间的关系求出CE=BC=6,根据勾股定理求出AB即可.
解答 (1)证明:连接OC,![]()
∵CD是⊙O的切线,
∴CD⊥OC,
又∵CD⊥AD,
∴AD∥OC,
∴∠CAD=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠CAD=∠CAO,
即AC平分∠DAB;
(2)解:∵∠CAD=∠CAO,
∴$\widehat{CE}$=$\widehat{CB}$,
∴CE=BC=6,
∵AB为直径,
∴∠ACB=90°,
由勾股定理得:AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{{8}^{2}+{6}^{2}}$=10,
即⊙O直径的长是10.
点评 本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com