分析 过点C作CE∥AB与AD的延长线相交于点E,根据两直线平行,内错角相等可得∠BAD=∠E,然后求出△ABD和△ECD相似,根据相似三角形对应边成比例可得$\frac{BD}{CD}=\frac{AB}{CE}$,根据角平分线的定义可得∠BAD=∠CAD,再求出∠CAD=∠E,根据等角对等边可得AC=CE,从而得证.
解答
证明:如图,过点C作CE∥AB与AD的延长线相交于点E,
所以,∠BAD=∠E,
∵∠ADB=∠EDC,
∴△ABD∽△ECD,
∴$\frac{BD}{CD}=\frac{AB}{CE}$,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠CAD=∠E,
∴AC=CE,
∴$\frac{BD}{CD}$=$\frac{AB}{AC}$.
点评 本题考查了角平分线,相似三角形的判定与性质,难点在于作辅助线构造出相似三角形和等腰三角形.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | a2+2 | B. | a2-2 | C. | a4+4 | D. | a4-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com