【题目】如图.已知某开发区有一块四边形空地ABCD,现计划在该空地上种植草皮,经测量∠ADC=90°,AD=6m,CD=8m,BC=AB=13m,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?
【答案】在该空地上种植草皮共需7200元
【解析】
在直角三角形ACD中可求得AC的长,过点B作BE⊥AC于点E,利用勾股定理可求出BE的长,进而可求出△ABC的面积,△ADC的面积易求,则四边形空地ABCD的面积可求出,结合已知条件每平方米草皮需200元,则该空地上种植草皮的钱数可求出.
解:过点B作BE⊥AC于点E,
∵∠ADC=90°,AD=6m,CD=8m,
∴AC==10m,
∵BC=AB=13m,
∴AE=CE=AC=5m,
∴BE==12m,
∴△ABC的面积=×10×12=60m2,
∵△ADC的面积=×6×8=24m2,
∴边形空地ABCD的面积=60﹣24=36m2,
∴在该空地上种植草皮共需36×200=7200元.
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,则BE与AF的数量关系是 .
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么上述结论还成立吗?请利用图②说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列解题过程,然后解答后面两个问题.
解方程:|x-3|=2.
解:当x-3≥0时,原方程可化为x-3=2,解得x=5;
当x-3<0时,原方程可化为x-3=-2,解得x=1.
所以原方程的解是x=5或x=1.
(1)解方程:|3x-2|-4=0.
(2)解关于x的方程:|x-2|=b+1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题正确的是( )
A.方程x2-4x+2=0无实数根;
B.两条对角线互相垂直且相等的四边形是正方形
C.甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是
D.若 是反比例函数,则k的值为2或-1。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)计算:﹣12+(π﹣3.14)0﹣(﹣)﹣2+;
(2)先化简,再求值:[(2x+y)(2x﹣y)+(x+y)2﹣2(2x2﹣xy)]÷(﹣x),其中x、y满足+(y+4)2=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数 ,自变量x与函数y的对应值如下表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | … |
y | … | 4 | 0 | -2 | -2 | 0 | 4 | … |
下列说法正确的是( )
A.抛物线的开口向下
B.当x>-3时,y随x的增大而增大
C.二次函数的最小值是-2
D.抛物线的对称轴x=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请你完成下面的证明:
已知:如图,∠GFB+∠B=180°,∠1=∠3,
求证:FC∥ED.
证明:∵∠GFB+∠B=180°
∴FG∥BC( )
∴∠3= ( ),
又∵∠1=∠3(已知)
∴∠1= (等量代换)
∴FC∥ED( )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知两个完全相同的直角三角形纸片△ABC、△DEF,如图1放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,现将图1中的△ABC绕点F按每秒10°的速度沿逆时针方向旋转180°,在旋转的过程中,△ABC恰有一边与DE平行的时间为___________s
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,AB∥OC,A(0,﹣4),B(a,b),C(c,0),并且a,c满足c=+10.一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P,Q分别从点A,O同时出发,当点P运动到点B时,点Q随之停止运动,设运动时间为t(秒).
(1)求B,C两点的坐标;
(2)当t为何值时,四边形PQCB是平行四边形?
(3)点D为线段OC的中点,当t为何值时,△OPD是等腰三角形?直接写出t的所有值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com