精英家教网 > 初中数学 > 题目详情

【题目】如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数的图象交于AB两点.若点Cy轴上任意一点,连接ACBC,则ABC的面积为(  )

A. 3B. 4C. 5D. 10

【答案】C

【解析】

Pa0),由直线ABy轴,则AB两点的横坐标都为a,而AB分别在反比例函数图象上,可得到A点坐标为(a-),B点坐标为(a),从而求出AB的长,然后根据三角形的面积公式计算即可.

Pa0),a0

AB的横坐标都为aOP=a

xa代入反比例函数y=﹣中得:y=﹣

Aa,﹣);

xa代入反比例函数y中得:y

Ba),

ABAP+BP+

SABCABOP××a5

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】黄石市在创建国家级文明卫生城市中,绿化档次不断提升.某校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.

(1)求A种,B种树木每棵各多少元?

(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,连接BE交对角线AC于点F,则∠EFC_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,我们将相同的两块含30°角的直角三角板RtDEFRtABC叠合,使DEAB上,DE过点C,已知ACDE6

1)将图1中的△DEF绕点D逆时针旋转(DFAB不重合),使边DFDE分别交ACBC于点PQ,如图2

①求证:△CQD∽△APD;②连接PQ,设APx,求面积SPCQ关于x的函数关系式;

2)将图1中的△DEF向左平移(点AD不重合),使边FDFE分别交ACBC于点MNAMt,如图3

①判断△BEN是什么三角形?并用含t的代数式表示边BEBN;②连接MN,求面积SMCN关于t的函数关系式;

3)在旋转△DEF的过程中,试探求AC上是否存在点P,使得SPCQ等于平移所得SMCN的最大值?说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校计划为我和我的祖国演讲比赛购买奖品.已知购买3A奖品和2B奖品共需120元;购买5A奖品和4B奖品共需210元.

1)求AB两种奖品的单价;

2)学校准备购买AB两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数分别交y轴、x轴于A、B两点,抛物线y=﹣x2+bx+c过A、B两点.

(1)求这个抛物线的解析式;

(2)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN有最大值?最大值是多少?

(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.

(1)问实际每年绿化面积多少万平方米?

(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,分别是两边的中点,如果上的所有点都在△ABC的内部或边上,则称△ABC的中内弧.例如,下图中△ABC的一条中内弧.

1)如图,在Rt△ABC中,分别是的中点.画出△ABC的最长的中内弧,并直接写出此时的长;

2)在平面直角坐标系中,已知点,在△ABC中,分别是的中点.

①若,求△ABC的中内弧所在圆的圆心的纵坐标的取值范围;

②若在△ABC中存在一条中内弧,使得所在圆的圆心P△ABC的内部或边上,直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人用如图的两个分格均匀的转盘做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:求甲、乙两人获胜的概率.

查看答案和解析>>

同步练习册答案