【题目】如图,△ABC的面积为49cm2,AE=ED,BD=3DC,则图中△AEF的面积等于___________.
【答案】
【解析】分析:过D作DG∥CA交BF于G,可以得到△AEF≌△GEG,有全等三角形的性质得到GE=EF,DG=AF.由DG∥CF,得到BG=3GF,DG:FC= 3:4,进而有AF:FC=3:4.设EF=a,则GE=a,BG=6a,BE=7a.设S△AEF=x,则S△DEG=x,S△ABE=7x,得到S△ABF=8x.由AF:FC=3:4,得到S△ABF=21,解方程即可得到结论.
详解:过D作DG∥CA交BF于G,∴∠GDE=∠DAF.∵∠GED=∠AEF,AE=ED,∴△AEF≌△GEG,∴GE=EF,DG=AF.∵BD=3DC,DG∥CF,∴BG=3GF,△BDG∽BCF,∴DG:FC=BD:BC=3:4,∴DG=FC,∴AF:FC=3:4.
设EF=a,则GE=a,BG=6a,BE=7a.设S△AEF=x,则S△DEG=x,S△ABE=7x,∴S△ABF=8x.∵AF:FC=3:4,∴AF:AC=3:7,∴S△ABF==21,∴8x=21,∴x=.故△AEF的面积=.故答案为: .
科目:初中数学 来源: 题型:
【题目】图是一个可以自由转动的转盘,被分成了面积相等的三个扇形,分别标有数, , ,甲转动一次转盘,转盘停止后指针指向的扇形内的数记为(如果指针恰好指在分割线上,那么重转一次,直到指针指向某一扇形为止).图是背面完全一样、牌面数字分别是, , , 的四张扑克牌,把四张扑克牌背面朝上,洗匀后放在桌面上,乙随机抽出一张牌的牌面数字记为.计算的值.
()用树状图或列表法求的概率.
()甲乙两人玩游戏,规定:当是正数时,甲胜;否则,乙胜,你认为这个游戏规则对甲乙双方公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∠OAC=x°.
(1)如图1,若AB∥ON,则:①∠ABO的度数是 ;
②如图2,当∠BAD=∠ABD时,试求x的值(要说明理由);
(2)如图3,若AB⊥OM,则是否存在这样的X的值,使得△ADB中有两个相等的角?若存在,直接写出x的值;若不存在,说明理由.(自己画图)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间共游客居住.当每个房间定价为180元时,房间会全部住满;当每个房间的定价增加10元时,就会有一个房间空闲.
设每个房间每天的定价增加x个10元.
(Ⅰ)填写下表:
每个房间每天定价(元) | 180 | 190 | 200 | 210 | …… | 180×10x |
住满房间个数(个) | 50 | 49 | 48 | …… |
(Ⅱ)若游客居住的房间的当天收入为y(元),写出y关于x的函数关系式;
(Ⅲ)如果游客入住房间,宾馆需对每个房间每天支出20元的各种费用.当房间定价为多少的时候,宾馆获得的利润W(元)最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在离水面高度为5m的岸上有人用绳子拉船靠岸,开始绳子与水面的夹角为30°,此人以每秒0.5m的速度收绳.
(1)8秒后船向岸边移动了多少米?
(2)写出还没收的绳子的长度S米与收绳时间t秒的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线C:y=x2-4x+4和直线l:y=kx-2k(k>0).
(1)抛物线C的顶点D的坐标为 ;
(2)请判断点D是否在直线上,并说明理由;
(3)记函数的图像为G,点M(0,t),过点M垂直于轴的直线与图像G交于点.当1<t<3时,若存在t使得成立,结合图像,求k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com