精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点By轴的正半轴上,点A在反比例函数yk0x0)的图象上,点D的坐标为(43).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数yk0x0)的图象上时,则菱形ABCD沿x轴正方向平移的距离(  )

A.B.C.D.

【答案】B

【解析】

过点Dx轴的垂线,垂足为F,首先得出A点坐标,再利用待定系数法求得反比例函数解析式为y=;将菱形ABCD沿x轴正方向平移,使得点D落在函数y=x0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.

过点Dx轴的垂线,垂足为F

∵点D的坐标为(43),

OF4DF3

OD5

AD5

∴点A坐标为(48),

kxy4×832

∴反比例函数为y

将菱形ABCD沿x轴正方向平移,使得点D落在函数yx0)的图象D′点处,

过点D′x轴的垂线,垂足为F′

DF3

D′F′3

∴点D′的纵坐标为3

∵点D′yx0)的图象上

3

解得:x

OF′

FF′4

∴菱形ABCD平移的距离为

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,反比例函数yx0)的图象经过点A(﹣22),过点AABy轴,垂足为B,在y轴的正半轴上取一点P0t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是(  )

A. 1+B. 4+C. 4D. -1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AD=4,EAB上且AB=4BE,连接CE,作BFCEF,正方形对角线交于O点,连接OF,将△COF沿CE翻折得△CGF,连接BG,则BG的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形中,平分的中点,

1)求证:

2)求证:

3)若,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,ADBC,连接ODAC

1)求证:ABC∽△DCA

2)若AC2BC4,求DO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】己知反比例函数常数,.

1若点在这个函数的图象上,求的值;

2若在这个函数图象的每一个分支上,的增大而增大,求的取值范围;

3,试判断点是否在这个函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.

(1)求抛物线对应的函数关系式;

(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

(3)(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点MMN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求st之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,经过圆心的线段于点,与交于点.

(1)如图1,半径为,,求弦的长;

(2)如图2,半径为 ,,,求弦的长.

查看答案和解析>>

同步练习册答案