【题目】如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连接OD,AC.
(1)求证:△ABC∽△DCA;
(2)若AC=2,BC=4,求DO的长.
【答案】(1)见解析;(2)3
【解析】
(1)连接OC,证明∠DCA=∠BCO,∠ABC=∠DCA,从而可判定△ABC∽△DCA;
(2)由△ABC∽△DCA可得
,求得DA,再由勾股定理先求得DC、AB,然后求得OD.
(1)证明:如图,连接OC,
∵CD与⊙O相切
∴∠OCD=90°,
∴∠DCA+∠OCA=90°,
∵AB为直径,
∴∠ACB=90°,
∴∠ACO+∠BCO=90°,
∴∠DCA=∠BCO,
∵OC=OB,
∴∠BCO=∠CBO,
∴∠ABC=∠DCA,
∴△ABC∽△DCA;
(2)∵△ABC∽△DCA,
∴=,
∴=,
∴DA=5,
在Rt△ADC中,
DC===3 ,
在Rt△ABC中,
AB==6,
∴CO=3,
在Rt△OCD中,
OD==3,
∴DO的长为3.
科目:初中数学 来源: 题型:
【题目】如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.
(1)在图甲中画出一个ABCD.
(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明利用灯光下自己的影子长度来测量路灯的高度.如图,CD和EF是两等高的路灯,相距27m,身高1.5m的小明(AB)站在两路灯之间(D、B、F共线),被两路灯同时照射留在地面的影长BQ=4m,BP=5m.
(1)小明距离路灯多远?
(2)求路灯高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形网格中:
(1)向上平移6个单位长度,再向右平移5个单位长度后得到,则的坐标为______;
(2)以点为位似中心,将放大为原来的2倍,得到,请在网格中画出.
(3)的周长为_________________,面积为_________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,则菱形ABCD沿x轴正方向平移的距离( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE
(1)试证明△AEF∽△BEC;
(2)如图,过 C 点作 CH⊥AD 于 H,试探究线段 DH 与 BF 的数量关系,并说明理由;
(3)若 AD=1,CD=5,试求出 BE 的值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】晓东在解一元二次方程时,发现有这样一种解法:
如:解方程.
解:原方程可变形,得
.
,
,
直接开平方并整理,得,.
我们称晓东这种解法为“平均数法”.
(1)下面是晓东用“平均数法”解方程时写的解题过程.
.
,
.
直接开平方并整理,得,.
上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.
(2)请用“平均数法”解方程:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=2,P是BC边上与B、C不重合的任意一点,DQ⊥AP于点Q
(1)判断△DAQ与△APB是否相似,并说明理由.
(2)当点P在BC上移动时,线段DQ也随之变化,设PA=x,DQ=y,求y与x间的函数关系式,并求出x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com