精英家教网 > 初中数学 > 题目详情

【题目】如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:

(1)图中距小明家距离相同的是哪些地方?

(2)学校、商场和停车场分别在小明家的什么方位?

(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?

【答案】(1)距小明家距离相同的是学校和公园(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向(3)停车场距离小明家800m

【解析】整体分析:

(1)由点A,B,C,P到原点O的距离即可判断;(2)以小明家为中心,计算出学校、商场和停车场的方向角;(3)根据学校距离小明家400m,计算出比例尺即可.

解:(1)∵点COP的中点,∴OCOP×42cm

OCOA

即距小明家距离相同的是学校和公园.

(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向.

(3)图上1cm表示400÷2200m

商场距离小明家2.5×200500m,停车场距离小明家4×200800m

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】出租车司机小张某天上午营运全是在东西走向的政府大道上进行的,如果规定向东为正,向西为负,他这天上午的行程是(单位千米)+15,-3,+16,-11,+10,-12,+4,-15,+16,-18

(1)将最后一名乘客送达目的地时,小张距上午出发点的距离是多少千米?在出发点的什么方向?

(2)若汽车耗油量为06升/千米,出车时,邮箱有油722升,若小张将最后一名乘客送达目的地,再返回出发地,问小张今天上午是否需要加油?若要加油至少需要加多少才能返回出发地?若不用加油,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y= (k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是(
A.b=2a+k
B.a=b+k
C.a>b>0
D.a>k>0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作探究:

数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到MNK.如图2所示:

探究:

(1)若1=70°MKN= °

(2)改变折痕MN位置,MNK始终是 三角形,请说明理由;

应用:

(3)爱动脑筋的小明在研究MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出KMN的面积最小值为,此时1的大小可以为 °

(4)小明继续动手操作,发现了MNK面积的最大值.请你求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:FC=(
A.1:4
B.1:3
C.1:2
D.1:1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图.在ABCADEBAC=∠DAE=90°AB=ACAD=AECDE三点在同一条直线上连接BDBE.以下四个结论

BD=CE②∠ACE+∠DBC=45°BDCE④∠BAE+∠DAC=180°

其中正确的有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是一个正方体的表面展开图,请回答下列问题:

(1)与面B,C相对的面分别是   

2)若A=a3+a2b+3B=a2b+a3C=a31D=a2b+15),且相对两个面所表示的代数式的和都相等,求EF分别代表的代数式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点P是线段AD上一动点,OBD的中点,PO的延长线交BC于点Q。

(1)求证:OP=OQ;

(2)若AD=8cm,AB=6cm,P从点A出发,以1cm/秒的速度向点D运动(不与点D重合),设点P运动时间为t秒,请用t表示PD的长;并求当t为何值时,四边形PBQD是菱形。

查看答案和解析>>

同步练习册答案