【题目】操作探究:
数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到△MNK.如图2所示:
探究:
(1)若∠1=70°,∠MKN= °;
(2)改变折痕MN位置,△MNK始终是 三角形,请说明理由;
应用:
(3)爱动脑筋的小明在研究△MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出△KMN的面积最小值为,此时∠1的大小可以为 °
(4)小明继续动手操作,发现了△MNK面积的最大值.请你求出这个最大值.
【答案】(1)、40;(2)、等腰;(3)、45°或135°(4)、最大值为1.3.
【解析】
试题分析:(1)、根据矩形的性质和折叠的性质求出∠KNM,∠KMN的度数,根据三角形内角和即可求解;
(2)、利用翻折变换的性质以及两直线平行内错角相等得出KM=KN;(3)、利用当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M,得出∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°;(4)、分情况一:将矩形纸片对折,使点B与D重合,此时点K也与D重合;情况二:将矩形纸片沿对角线AC对折,此时折痕即为AC两种情况讨论求解.
试题解析:(1)、如图1, ∵四边形ABCD是矩形, ∴AM∥DN. ∴∠KNM=∠1. ∵∠1=70°,
∴∠KNM=∠KMN=∠1=70°, ∴∠MKN=40°.
(2)、等腰, 理由:∵AB∥CD,∴∠1=∠MND, ∵将纸片沿MN折叠, BGFYTTTQ ∴∠1=∠KMN,∠MND=∠KMN,
∴KM=KN;
(3)、如图2,当△KMN的面积最小值为时,KN=BC=1,故KN⊥B′M, ∵∠NMB=∠KMN,∠KMB=90°,
∴∠1=∠NMB=45°,同理当将纸条向下折叠时,∠1=∠NMB=135°,
(4)、分两种情况:
情况一:如图3,将矩形纸片对折,使点B与D重合,此时点K也与D重合. MK=MB=x,则AM=5﹣x.
由勾股定理得12+(5﹣x)2=x2, 解得x=2.6. ∴MD=ND=2.6. S△MNK=S△MND=×1×2.6=1.3.
情况二:如图4,将矩形纸片沿对角线AC对折,此时折痕即为AC. MK=AK=CK=x,则DK=5﹣x.
同理可得MK=NK=2.6. ∵MD=1, ∴S△MNK=×1×2.6=1.3. △MNK的面积最大值为1.3.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接0B,OC,若△ADE的周长为6cm,△OBC的周长为16cm.
(1)求线段BC的长;
(2)连接OA,求线段OA的长;
(3)若∠BAC=120°,求∠DAE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王周末骑电单车从家出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书店后继续前往商场,如图是他离家的距离与时间的关系 示意图,请根据图中提供的信息回答下列问题:
(1)小王从家到新华书店的路程是多少米?
(2)小王在新华书店停留了多少分钟?
(3)买到书店,小王从新华书店到商场的汽车速度是多少米/分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移 个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:
(1)图中距小明家距离相同的是哪些地方?
(2)学校、商场和停车场分别在小明家的什么方位?
(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y= (k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是( )
A.b=2a+k
B.a=b+k
C.a>b>0
D.a>k>0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象经过点A(2,1),B(﹣1,﹣3).
(1)求此一次函数的解析式;
(2)求此一次函数的图象与x轴、y轴的交点坐标;
(3)求此一次函数的图象与两坐标轴所围成的三角形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并予以证明.(写出一种即可)
关系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四边形ABCD中, , ;
求证:四边形ABCD是平行四边形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com