【题目】如图,将等腰直角三角形OAB放置于平面直角坐标系中,OA=AB=10,∠A=90°,D是AB边上的动点(不与端点A,B重合),作∠ACD=60°,交OA于点C,若点C,D都在双曲线y=(k>0,x>0)上,则k的值为( )
A. B. C. D. 25
【答案】C
【解析】
过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,设OE=a,根据等边三角形的性质即可找出点D、C的坐标,再利用反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出a值,进而即可求出k值.
过点D作DE⊥x轴于点E,过C作CF⊥x轴于点F,如图所示:
设OF=a,则OC=a,CF=a,
∴AC=OA-OC=10-a,AD=AC=10-a,BD=10-10+a,
∴DE=EB=BD=5-5+a,OE=OB-EB=10-(5-5+a)=5+5-a,
∴点C(a,a),点D(5+5-a,5-5+a).
∵点C、D都在双曲线y=上(k>0,x>0),
∴aa=(5+5-a)(5-5+a),
解得:a=5或a=.
当a=5时,点C、D与点A重合,不符合题意,
∴a=5舍去.
∴点C(),
∴k=
=.
故选:C.
科目:初中数学 来源: 题型:
【题目】“丰收1号”小麦的试验田是边长为米(a>1)的正方形减去一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为()米的正方形,两块试验田里的小麦都收获了500千克.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分10分)
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处.
(1) 说明本次台风会影响B市;
(2)求这次台风影响B市的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘船以每小时海里的速度向西南方向航行,在处观测灯塔在船的南偏西的方向,航行分钟后到达处,这时灯塔恰好在船的正西方向.已知距离此灯塔海里以内的海区有暗礁,这艘船继续沿西南方向航行是否有触礁的危险?为什么?(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△ABC,点C为x轴正半轴上一动点(OC>10,连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.下列结论正确的有( )个
(1)△OBC≌△ABD;(2)点E的位置不随着点C位置的变化而变化,点E的坐标是(0,) ;(3)∠DAC的度数随着点C位置的变化而改变;(4)当点C的坐标为(m,0)(m>1)时,四边形ABDC的面积S与m的函数关系式为.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A、B两点,A点坐标是(﹣2,1),B点坐标(1,n);
(1)求出k,b,m,n的值;
(2)求△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=2的抛物线经过点A(-1,0),C(0,5)两点,与x轴另一交点为B,已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.
(1)求此抛物线的解析式;
(2)当a=1时,求四边形MEFP面积的最大值,并求此时点P的坐标;
(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数y=2x2﹣mx+m﹣2,以下结论:①不论m取何值,抛物线总经过点(1,0);②抛物线与x轴一定有两个交点;③若m>6,抛物线交x轴于A、B两点,则AB>1;④抛物线的顶点在y=﹣2(x﹣1)2图象上.上述说法错误的序号是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com