精英家教网 > 初中数学 > 题目详情
5.-$\frac{1}{8}$的立方根是-$\frac{1}{2}$,125的立方根是5.

分析 根据立方根的含义和求法,分别求出立方等于-$\frac{1}{8}$、125的数各是多少即可.

解答 解:∵(-$\frac{1}{2}$)3=-$\frac{1}{8}$,
∴-$\frac{1}{8}$的立方根是-$\frac{1}{2}$.

∵53=125,
∴125的立方根是5.
故答案为:-$\frac{1}{2}$、5.

点评 此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知$\frac{1}{(1+2x)(1+{x}^{2})}$=$\frac{A}{1+2x}$$+\frac{Bx+C}{1+{x}^{2}}$,求A,B,C.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,在平面直角坐标系中,一次函数y=$\frac{1}{2}$x-1的图象与反比例函数y=$\frac{k}{x}$(k≠0)的图象相交于A(4,n)、B(m,-2)两点.
(1)求出m、n、k的值;
(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在直角坐标系xOy中,直线l:y=ax+b交x轴于点A(-2,0),交y轴于点B(0,2),半径为$\sqrt{2}$的⊙P与x轴相切于点C($\sqrt{2}$,0).
(1)求直线l的函数解析式;
(2)试判断直线l与⊙P位置关系,并说明理由;
(3)当反比例函数y=$\frac{k}{x}$(k>0)的图象与⊙P有两个交点时,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,△ABC是⊙O的内接三角形,BC是⊙O的直径,AE是⊙O的弦,点F是弧BE上一点,且AE⊥CF,垂足是D,⊙O的切线PE交AB的延长线于点P,
(1)求证:AB=EF;
(2)若∠CAE=∠BCE,AB=6,AC=8,
①求EC的长;
②求线段PE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.我们规定,对于任意实数m,符号[m]表示小于或等于m的最大整数,例如:[2,1]=2,[2]=2,[-2,1]=-3,若对于整数x有[$\frac{3x-1}{2}$]=-5,则符合题意的x有(  )
A.0个B.1个C.2个D.无数个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.求原计划每天生产的零件个数和规定的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.一次函数y=kx+b(k≠0)的图象如图所示,当y<0时,x的取值范围是(  )
A.x<0B.x<3C.x<4D.x>4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.实数-2,0.3,$\frac{1}{7}$,$\sqrt{5}$,-π中,无理数的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案