精英家教网 > 初中数学 > 题目详情

【题目】观察下列各式:13=1=;13+23=9=;13+23+33=36=;13+23+33+43=100=,

回答下面的问题:

(1)13+23+33+43+…+103=_____(写出算式即可);

(2)计算13+23+33+…+993+1003的值;

(3)计算:113+123+…+993+1003的值.

【答案】(1);(2) 25502500;(3) 25499475

【解析】

(1)(2)由题意可知:从1开始连续自然数的立方和,等于最后一个自然数的平方乘这个自然数加1的平方的,由此规律计算得出答案即可;
(3)由(2)的结果减去(1)的结果即可.

(1)13+23+33+43+…+103=×102×112

(2) 13+23+33+…+993+1003=×1002×1012=25502500;

(3) ×1002×1012×102×112=255025003025=25499475.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知等腰三角形ABC的底角为30,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E,连接CD.
(1)求证:DE为⊙O的切线;
(2)若AB=4 ,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:

A、B、C为数轴上三点,若点CA的距离是点CB的距离2倍,我们就称点C是【A,B】的好点.

如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点.

知识运用:

(1)如图1,表示0的点D到点A的距离是1,到点B的距离是2,那么点D 【A,B】的好点;(请在横线上填是或不是

(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数 所对应的点是【M,N】的好点(写出所有可能的情况);

拓展提升:

(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过几秒时,P、AB中恰有一个点为其余两点的好点?(写出所有情况)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点 AB 所表示的数分别为 a b,且满足|a3|(b9)20180O 为原点.

(1) 试求 a b 的值

(2) C O 点出发向右运动,经过 3 秒后点 C A 点的距离是点 C B 点距离的 3 倍,求点 C 的运动速 度?

(3) D 1 个单位每秒的速度从点 O 向右运动,同时点 P 从点 A 出发以 5 个单位每秒的速度向左运动, 点 Q 从点 B 出发,以 20 个单位每秒的速度向右运动.在运动过程中,MN 分别为 PDOQ 的中点,问的值是否发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题
(1)
.
(2)解分式方程:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.

(1)求证:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1 , 另两张直角三角形纸片的面积都为S2 , 中间一张正方形纸片的面积为S3 , 则这个平行四边形的面积一定可以表示为( )

A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10分已知:如图,在ABC中AB=AC,ADBC,垂足为D,AN是ABC外角CAM的平分线,CEAN,垂足为E,猜想四边形ADCE的形状,并给予证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数中y=ax2+bx﹣3的x、y满足表:

x

﹣1

0

1

2

3

y

0

﹣3

﹣4

﹣3

m


(1)求该二次函数的解析式;
(2)求m的值并直接写出对称轴及顶点坐标.

查看答案和解析>>

同步练习册答案