【题目】如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB= ,AB=3,求BD的长.
【答案】
(1)
证明:连接OC,
∵CD是⊙O的切线,
∴∠OCD=90°,
∴∠ACO+∠DCE=90°,
又∵ED⊥AD,∴∠EDA=90°,
∴∠EAD+∠E=90°,
∵OC=OA,∴∠ACO=∠EAD,
故∠DCE=∠E,
∴DC=DE,
(2)
解:设BD=x,则AD=AB+BD=3+x,OD=OB+BD=1.5+x,
在Rt△EAD中,
∵tan∠CAB= ,∴ED= AD= (3+x),
由(1)知,DC= (3+x),在Rt△OCD中,
OC2+CD2=DO2,
则1.52+[ (3+x)]2=(1.5+x)2,
解得:x1=﹣3(舍去),x2=1,
故BD=1.
【解析】(1)根据“等角对等边”,从证∠DCE=∠E出发,连接OC,根据两个直角,去找相关角的数量关系;
(2)根据勾股定理构造方程去解.
科目:初中数学 来源: 题型:
【题目】某一出租车一天下午以鼓楼为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:㎞)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.
⑴将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?
⑵若每千米的价格为2.4元,司机一个下午的营业额是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(9)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
(1)按表格数据格式,表中的a= ;b= ;
(2)请估计:当次数s很大时,摸到白球的频率将会接近 ;
(3)请推算:摸到红球的概率是 (精确到0.1);
(4)试估算:口袋中红球有多少只?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.
(1)求小明步行速度(单位:米/分)是多少;
(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列各式:13=1=;13+23=9=;13+23+33=36=;13+23+33+43=100=,
回答下面的问题:
(1)13+23+33+43+…+103=_____(写出算式即可);
(2)计算13+23+33+…+993+1003的值;
(3)计算:113+123+…+993+1003的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,中线BE,CD相交于点O,连接DE,则下列判断错误的是( )
A.DE是△ABC的中位线
B.点O是△ABC的重心
C.△DEO∽△CBO
D.=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣3)+7+(﹣6)+(﹣7)
(2)(-20)+(+3)-(-5)-(+7)
(3)(﹣3.5)×(﹣2)÷(- )÷(﹣5)
(4)﹣14+16÷(﹣2)3×|﹣3﹣1|
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2,若∠EOF=45°,则F点的纵坐标是( )
A. B. 1 C. D. -1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com