分析 (1)AB=AC+CD.首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;
(2)AC+AB=CD.首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.
(3)AB=CD-AC,理由为:在AF上截取AG=AC,如图3所示,同(2)即可得证.
解答 解:(1)过D作DE⊥AB,交AB于点E,如图①,
∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,
∴DE=DC,
在Rt△ACD和Rt△AED中,$\left\{\begin{array}{l}{DE=DC}\\{AD=AD}\end{array}\right.$,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE,∠ACB=∠AED,
∵∠ACB=2∠B,
∴∠AED=2∠B,
又∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴BE=DE=DC,
则AB=BE+AE=CD+AC;
(2)AB=CD+AC,理由:
在AB上截取AG=AC,如图②,
∵AD为∠BAC的平分线,
∴∠GAD=∠CAD,
在△ADG和△ADC中,$\left\{\begin{array}{l}{AG=AC}\\{∠GAD=∠CAD}\\{AD=AD}\end{array}\right.$,
∴△ADG≌△ADC(SAS),
∴CD=CG,∠AGD=∠ACB,
∵∠ACB=2∠B,
∴∠AGD=2∠B,
又∵∠AGD=∠B+∠GDB,
∴∠B=∠GDB,
∴BE=DG=DC,
则AB=BG+AG=CD+AC;
(3)AB=CD-AC,理由:
在AF上截取AG=AC,如图③,
∵AD为∠FAC的平分线,
∴∠GAD=∠CAD,
在△ADG和△ACD中,$\left\{\begin{array}{l}{AG=AC}\\{∠GAD=∠CAD}\\{AD=AD}\end{array}\right.$,
∴△ADG≌△ACD(SAS),
∴CD=GD,∠AGD=∠ACD,即∠ACB=∠FGD,
∵∠ACB=2∠B,
∴∠FGD=2∠B,
又∵∠FGD=∠B+∠GDB,
∴∠B=∠GDB,
∴BG=DG=DC,
则AB=BG-AG=CD-AC.
点评 此题是三角形综合题,主要考查了全等三角形的判定与性质,角平分线的性质,等腰直角三角形的判定和性质的综合应用,正确作出辅助线构造全等三角形并运用全等三角形的对应边相等是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com