精英家教网 > 初中数学 > 题目详情
有一个角是60°的菱形,它的一条对角线长为6,则这个菱形的边长是(  )
A、6
B、3
C、2
3
D、6或2
3
考点:菱形的性质
专题:
分析:作出图形,分①6是较短的对角线时,判断出△ABC是等边三角形,然后根据等边三角形的三条边都相等解答;②6是较长的对角线时,根据菱形的对角线互相垂直平分可得OB=3,菱形的对角线平分一组对角可得∠ABO=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2AO,然后利用勾股定理列方程求解即可.
解答:解:如图,①6是较短的对角线时,∵∠ABC=60°,AB=BC,
∴△ABC是等边三角形,
∴AB=AC=6;
②6是较长的对角线时,∵四边形ABCD是菱形,
∴OB=
1
2
×6=3,∠ABO=
1
2
∠ABC=
1
2
×60°=30°,
∴AB=2AO,
在Rt△ABO中,AB2=BO2+AO2
即AB2=32+(
1
2
AB)2
解得AB=2
3

综上所述,菱形的边长为6或2
3

故选D.
点评:本题考查了菱形的性质,等边三角形的判定与性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观,难点在于分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

近似数23.16万精确到(  )
A、百分位B、百位C、千位D、万位

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,点P从点A出发,以1cm/s的速度沿AB运动;同时,点Q从点B出发,以2cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.
(1)试写出△PBQ的面积S与动点运动时间t之间函数表达式;
(2)运动时间t为何值时,△PBQ的面积最大?最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,则a的值为(  )
A、1或-1
B、-1
C、1
D、
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

因式分解:(x-y)(x+y)+x(x+y).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=4,AC=6,AD是BC边上的中线,求AD的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c的图象如图,点(-
b
a
b2-4ac
)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是一块直角三角形板材,其中,∠C=90°,AC=8cm,BC=6cm,请问:如何从这块板材上裁剪下一块面积最大的正方形?请画出你的设计图,并求出这块正方形的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:
x-20
3
+
x-18
5
+
x-16
7
+
x-14
9
+
x-12
11
=5.

查看答案和解析>>

同步练习册答案