| A. | 5 | B. | $\frac{5}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{5}{9}$ |
分析 由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的$\frac{1}{9}$,根据相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比,进而得出OB′的长.
解答 解:∵矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的$\frac{1}{9}$,
∴矩形OA′B′C′与矩形OABC的位似比为:1:3,
∵OC=3,OA=4,
∴OB=5,
∴OB′=$\frac{1}{3}$×5=$\frac{5}{3}$.
故选:B.
点评 此题考查了位似变换与坐标与图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com