【题目】如图,在△ABC中,∠C=90°,AC=3cm,BC=4cm. P、Q分别为AB、BC上的动点,点P从点A出发沿AB方向作匀速移动的同时,点Q从点B出发沿BC方向向点C作匀速移动,移动的速度均为1cm/s,设P、Q移动的时间为t(0<t≤4).
(1)当t为何值时,△BPQ与△ABC相似;
(2)当t为何值时,△BPQ是等腰三角形.
【答案】(1)t=或时,△BPQ与△ABC相似;(2)t=2.5或或.
【解析】试题分析:
(1)由已知条件易得AB=5,由于△BPQ和△ABC有公共角∠B,所以当或时,两三角形相似,由此可列出方程解得t的值;
(2)如图,由题意可知,需分三种情况讨论:①BP=BQ时,可直接列方程求得t的值;②BQ=PQ时,过点Q作QE⊥AB于点E,再证△BQE∽△BAC,从而可利用相似三角形的性质列比例式求出此时t的值;③PB=PQ时,过点P作PE⊥BC于点E,再证△PBE∽△ABC,从而可利用相似三角形的性质列比例式求出此时t的值.
试题解析:
(1)∵在△ABC中,∠C=90°,AC=3cm,BC=4cm.
∴AB=(cm).
∵△BPQ和△ABC有公共角∠B,
∴①当时,△BPQ∽△BCA,由此可得: ,解得: ;
②当时,△BPQ∽△BAC,由此可得: ,解得: ;
∴当或时,△BPQ与△ABC相似;
(2)①如图1,当BP=BQ时,△BPQ是等腰三角形,由题意可得: ,解得: ;
②如图2,当BQ=PQ时,过点Q作QE⊥AB于点E,则BE=PE=BP=,∠BEQ=∠C=90°,
又∵∠B=∠B,
∴△BEQ∽△BCA,
∴,即 ,解得: ;
③如图3,当PB=PQ时,过点P作PE⊥BC于点E,则BE=EQ= ,∠BEP=∠C=90°,
又∵∠B=∠B,
∴△BEP∽△BCA,
∴,即,解得: ;
综上所述,当, , 时,△BPQ是等腰三角形.
科目:初中数学 来源: 题型:
【题目】为了争创全国文明卫生城市,优化城市环境,某市公交公司决定购买10辆全新的混合动力公交车,现有两种型号,它们的价格及年省油量如下表:
型 号 | ||
价格(万元/辆) | ||
年省油量(万升/辆) | 2.4 | 2 |
经调查,购买一辆型车比购买一辆型车多20万元,购买2辆型车比购买3辆型车少60万元.
(1)请求出和的值;
(2)若购买这批混合动力公交车(两种车型都要有), 每年能节省的油量不低于22.4万升,请问有几种购车方案?(不用一一列出)请求出最省钱的购车方案所需的车款.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图(1)).令△ABD不动,
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图(2)),证明:MB=MC.
(2)若将图(1)中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图(3)),判断MB、MC的数量关系,并说明理由.
(3)在(2)中,若∠CAE的大小改变(图(4)),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年5月6日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31吨,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70吨.
(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?
(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148吨,且小型渣土运输车至少派出2辆,则有哪几种派车方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,D为BC边上一点.
(1)如图①,在Rt△ABC中,∠C=90°,将△ABC沿着AD折叠,点C落在AB边上.请用直尺和圆规作出点D(不写作法,保留作图痕迹);
(2)如图②,将△ABC沿着过点D的直线折叠,点C落在AB边上的E处.
①若DE⊥AB,垂足为E,请用直尺和圆规作出点D(不写作法,保留作图痕迹);
②若AB=,BC=3,∠B=45°,求CD的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小明在教学楼A处分别观测对面实验楼CD底部的俯角为45°,顶部的仰角为37°,已知教学楼和实验楼在同一平面上,观测点距地面的垂直高度AB为15m,求实验楼的垂直高度即CD长(精确到1m).
参考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>3.其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com