精英家教网 > 初中数学 > 题目详情
10.如图,经过点A(0,-6)的抛物线y=$\frac{1}{2}$x2+bx+c与x轴相交于B(-2,0),C两点.
(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,直接写出AM的长.

分析 (1)该抛物线的解析式中只有两个待定系数,只需将A、B两点坐标代入即可得解.
(2)首先根据平移条件表示出移动后的函数解析式,从而用m表示出该函数的顶点坐标,将其代入直线AB、AC的解析式中,即可确定P在△ABC内时m的取值范围.
(3)先在OA上取点N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,显然在y轴的正负半轴上都有一个符合条件的M点;以y轴正半轴上的点M为例,先证△ABN、△AMB相似,然后通过相关比例线段求出AM的长.

解答 解:(1)将A(0,-6)、B(-2,0)代入抛物线y=x2+bx+c中,得:
$\left\{\begin{array}{l}{0+c=-6}\\{2-2b+c=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{c=-6}\\{b=-2}\end{array}\right.$. 
∴抛物线的解析式:y=$\frac{1}{2}$x2-2x-6=$\frac{1}{2}$(x-2)2-8,顶点D(2,-8);
(2)由题意,新抛物线的解析式可表示为:y=$\frac{1}{2}$(x-2+1)2-8+m,
即:y=$\frac{1}{2}$(x-2+1)2-8+m.它的顶点坐标P(1,m-8).
由(1)的抛物线解析式可得:C(6,0).
∴直线AB:y=-3x-6;直线AC:y=$\frac{3}{2}$x-6.
当点P在直线AC上时,$\frac{3}{2}$-6=m-8,解得:m=$\frac{7}{2}$;
又∵m>0,
∴当点P在△ABC内时,0<m<$\frac{7}{2}$.
(3)由A(0,-6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形.
如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°.

∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,
即∠NBA=∠OMB.
如图,在△ABN、△AM1B中,
∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=AN•AM1
由勾股定理,得AB2=(-2)2+(-6)2=40,
又∵AN=OA-ON=6-2=4,
∴AM1=40÷4=10,
OM1=AM1-OA=10-6=4
OM2=OM1=4
AM2=OA-OM2=6-4=2.
综上所述,AM的长为10或2.

点评 考查了二次函数综合题,曲线上点的坐标与方程的关系,平移的性质,二次函数的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质,勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.如图,在△ABC中,AB=AC=5,BC=7,△ABC的内切圆⊙O与边BC相切于点D,过点D作DE∥AC交⊙O于点E,过点E作⊙O的切线交BC于点F,则DE-EF的值等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{3}{4}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,点F为斜边AB上的一点,连接CF,CD平分∠ACF交AB于点D,点E在AC上,且有∠CFD=∠CDE.
(1)如图1,当点F为斜边AB的中点时,求CE的长;
(2)将点F从AB的中点沿AB方向向左移动到点B,其余条件不变,如图2.
①求点E所经过的路径长;
②求线段DE所扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,PA,PB分别与⊙O相切于A、B,点C在劣弧AB上(不与A,B重合),若∠APB=70°,则∠ACB=(  )
A.140°B.145°C.110°D.125°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.我市某校在推进新课改的过程中,开设的体育选修课有:
A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).请你根据统计图解答下列问题
(1)该班一共有50名学生,在扇形统计图中“E”对应扇形的圆心角的度数为36°
(2)将下面的频数分布直方图补充完整
(3)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于点C,D,连接AO并延长交PB的延长线于点F.若⊙O的半径为r,△PCD的周长等于3r,则$\frac{OA}{OF}$的值是$\frac{5}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.兴华初中准备购买10副某种品牌的乒乓球拍,每幅球拍配x(x≥2)个乒乓球,该校附近A,B两家超市都有这种品牌的乒乓球拍和乒乓球出售,且每副球拍的标价均为40元,每个乒乓球的标价为4元,目前两家超市同时在做促销活动:
A超市:所有商品均打九折(按标价的90%)销售;
B超市:买一副乒乓球拍送2个乒乓球.
设在A超市购买乒乓球拍和乒乓球的费用为yA(元),在B超市购买乒乓球拍和乒乓球的费用为yB(元).请解答下列问题:
(1)分别写出yA、yB与x之间的关系式;
(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?
(3)若每副球拍配15个乒乓球,请你帮助该活动中心设计出最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系中,矩形OCDE的两个顶点分别是C(3,0),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t s.
(1)填空:点A的坐标为(1,4);抛物线的解析式为y=-x2+2x+3.
(2)在图1中,若点P在线段OC上从点O向点C以每秒1个单位的速度运动,同时,点Q在线段CE上从点C向点E以每秒2个单位的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图2中,若点P在对称轴x=1上从点A开始向点B以每秒1个单位的速度运动,过点P作PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.下面是5×5的正方形网格,请你在图2、图3中分别作出一个与图1中三角形相似的三角形,要求所作三角形的顶点都在格点上,并且相似比不同.(相似比不为1)

查看答案和解析>>

同步练习册答案