精英家教网 > 初中数学 > 题目详情

【题目】汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PCl,垂足为点C.测得PC=30米,∠APC=71°,BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

【答案】该车没有超速.

【解析】先求得AC=PCtanAPC=87、BC=PCtanBPC=21,据此得出AB=AC﹣BC=87﹣21=66,从而求得该车通过AB段的车速,比较大小即可得.

RtAPC中,AC=PCtanAPC=30tan71°≈30×2.90=87,

RtBPC中,BC=PCtanBPC=30tan35°≈30×0.70=21,

AB=AC﹣BC=87﹣21=66,

∴该汽车的实际速度为=11m/s,

又∵40km/h≈11.1m/s,

∴该车没有超速.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,是线段上靠近点的三等分点.

(1)若点轴上的一动点,连接,当的值最小时,求出点的坐标及的最小值;

(2)如图2,过点,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2﹣2x+m+1x轴交于A(x1 , 0)、B(x2 , 0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1 , x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣ ,x1x2=

(1)m的取值范围;

(2)OA=3OB,求抛物线的解析式;

(3)(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为满足市场需求,新生活超市在端午节前夕购进价格为3/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线,若abc满足b=a+c,则称抛物线恒定抛物线.

1)求证:恒定抛物线必过x轴上的一个定点A

2)已知恒定抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C恒定抛物线,使得以PACQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知线段是直线上一动点,点分别为的中点,对下列各值:①线段的长;②的周长;③的面积;④直线之间的距离;⑤的大小.其中不会随点的移动而改变的是_____.(填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O 中,AB、CD是互相垂直的两条直径,点E上,CF⊥AE 于点F,若点F四等分弦AE,且AE=8,则⊙O 的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在矩形ABCD中,AD2AB,点E在直线AD上,连接BECE,若BEAD,则∠BEC的大小为_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。

(1)求点B的坐标;

(2)已知,C为抛物线与y轴的交点。

若点P在抛物线上,且,求点P的坐标;

设点Q是线段AC上的动点,作QDx轴交抛物线于点D,求线段QD长度的最大值。

查看答案和解析>>

同步练习册答案