【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。
【答案】解:(1)∵A、B两点关于对称轴对称 ,且A点的坐标为(-3,0),
∴点B的坐标为(1,0)。
(2)①∵抛物线,对称轴为,经过点A(-3,0),
∴,解得。
∴抛物线的解析式为。
∴B点的坐标为(0,-3)。∴OB=1,OC=3。∴。
设点P的坐标为,则。
∵,∴,解得。
当时,;当时,,
∴点P的坐标为(2,5)或(-2,-3)。
②设直线AC的解析式为,将点A,C的坐标代入,得:
,解得:。
∴直线AC的解析式为。
∵点Q在线段AC上,∴设点Q的坐标为。
又∵QD⊥x轴交抛物线于点D,∴点D的坐标为。
∴。
∵,∴线段QD长度的最大值为。
【解析】(1)由抛物线的对称性直接得点B的坐标。
(2)①用待定系数法求出抛物线的解析式,从而可得点C的坐标,得到,设出点P 的坐标,根据列式求解即可求得点P的坐标。
②用待定系数法求出直线AC的解析式,由点Q在线段AC上,可设点Q的坐标为,从而由QD⊥x轴交抛物线于点D,得点D的坐标为,从而线段QD等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解。
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=(x>0)经过点C.将△ABC沿y轴向上平移m个单位长度,使点A恰好落在双曲线上,则m的值为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,长方形的三个顶点的坐标为,,,且轴,点是长方形内一点(不含边界).
(1)求,的取值范围.
(2)若将点向左移动8个单位,再向上移动2个单位到点,若点恰好与点关于轴对称,求,的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象经过点A(﹣3,﹣2).
(1)求反比例函数的解析式;
(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于△ABC及其边上的点P,给出如下定义:如果点,,,……,都在△ABC的边上,且,那么称点,,,……,为△ABC关于点P的等距点,线段,,,……,为△ABC关于点P的等距线段.
(1)如图1,△ABC中,∠A<90°,AB=AC,点P是BC的中点.
①点B,C △ABC关于点P的等距点,线段PA,PB △ABC关于点P的等距线段;(填“是”或“不是”)
②△ABC关于点P的两个等距点,分别在边AB,AC上,当相应的等距线段最短时,在图1中画出线段,;
(2)△ABC是边长为4的等边三角形,点P在BC上,点C,D是△ABC关于点P的等距点,且PC=1,求线段DC的长;
(3)如图2,在Rt△ABC中,∠C=90°,∠B=30°.点P在BC上,△ABC关于点P的等距点恰好有四个,且其中一个是点.若,直接写出长的取值范围.(用含的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△PAB中,PA=PB,C、D是直线AB上两点,连接PC、PD.
(1)请添加一个条件: ,使图中存在两个三角形全等.
(2)证明(1)的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);
类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。
深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。
③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com