精英家教网 > 初中数学 > 题目详情

【题目】如图,点Py轴的正半轴上,⊙Px轴于BC两点,以AC为直角边作等腰RtACDBD分别交y轴和⊙PEF两点,连接ACFC

(1)求证:∠ACF=ADB

(2)若点ABD的距离为mBF+CF=n,求线段CD的长;

(3)当⊙P的大小发生变化而其他条件不变时,的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.

【答案】见解析

【解析】

(1)连接AB,根据线段垂直平分线性质求出AB=AC=AD,推出∠ADB=∠ABD,根据∠ABD=∠ACM求出即可;

(2)过点AAHBD于点H,求得∠FCD=FDC,根据勾股定理和等腰直角三角形的性质求出CD的平方,即可求出答案;

(3)过点DDH⊥AON,过点DDQ⊥BCQ根据AASDAM ≌△ACODAF ≌△CAF,推出DH=AO,AH=OC,推出DQ=BQ,得出∠DBQ=45°,推出∠HDE=45°,得出等腰直角三角形DHE即可.

解:(1)证明:∵ POBC

BO=CO

AO垂直平分BC

AB=AC

又∵ ACD是以AC为直角边作等腰直角三角形

AC= AD

AB= AD

ABD=ADB

ABD=ACF

ACF =ADB

解:(2)过点AAHBD于点H

AH=1

ACD是以AC为直角边作等腰直角三角形

ACD=ADC

ACF =ADB

∴∠ACD-∠ACF =ADC-∠ADB

即:∠FCD=FDC

CF =DF

BF+CF=14

BD= BF+ DF = BF+CF =14

又∵ AB= AD

BH= DH=BD=7

∴在RtADH中:AD=

AC= AD

CD=

解:(3的值不发生变化,过点过点DDMy轴于点M

DMA=AOC=90°

OAC+ACO=90°

ACD是以AC为直角边作等腰直角三角形

,∴ DAC=90°AC= AD

DAM +OAC = 90°

∴∠DAM=ACO

DAM ≌△ACO

DM=AO

DAFCAF中,

AD=ACAF=AFDF=CF

DAF ≌△CAF

DAF=CAF = 45°

CBF=CAF = 45°

BEO = 45°

DEM=BEO = 45°

DEM是等腰直角三角形

“点睛”本题考查了等腰直角三角形,全等三角形的性质和判,及勾股定理,线段垂直平分线性质,解(1)小题的关键是求出AB=AC=AD,解(2)小题的关键是求出BH的长,解(3)小题的关键是证出△DEM是等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】航模兴趣小组的老师想知道全组学生的年龄情况,于是让大家把自己的年龄写在纸上,下表是全组40名学生的年龄(单位:岁).

14

13

13

15

16

12

14

16

17

13

14

15

12

12

13

14

15

16

15

14

13

12

15

14

17

16

16

13

12

14

14

15

13

16

15

16

17

14

14

13

(1)在这个统计表中,13岁的频数是多少?频率是多少?

(2)多少岁的频率最大,这个最大频率是多少?

(3)假如老师随机地问一名学生的年龄,你认为老师最可能听到的回答是多少岁?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】200851日,目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,苏南A地到宁波港的路程比原来缩短了120千米.已知运输车速度不变时,行驶时间将从原来的320分缩短到2时.

(1)求跨海大桥到宁波港的路程.

(2)若货物运输费用=A地经杭州湾包括运输成本和时间成本,已知某车货物从A地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?

(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:一车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以G(0,1)为圆心,半径为2的圆与x轴交于AB两点,与y轴交于CD两点,点E为⊙G上一动点,CFAEF,当点EB点出发顺时针运动到D点时,点F经过的路径长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)(x+8)2=36;

(2)x(5x+4)-(4+5x)=0;

(3)x2+3=3(x+1);

(4)2x2x-1=0(用配方法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中,装有除颜色外其余均相同的红、蓝两种球,已知其中红球有3个,且从中任意摸出一个是红球的概率为0.75.

(1)根据题意,袋中有 个蓝球.

(2)若第一次随机摸出一球,不放回,再随机摸出第二个球.请用画树状图或列表法求“摸到两球中至少一个球为蓝球(记为事件A)”的概率P(A).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某政府在广场上树立了如图所示的宣传牌,数学兴趣小组的同学想利用所学的知识测量宣传牌的高度AB,在D处测得点A、B的仰角分别为38°、21°,已知CD=20m,点A、B、C在一条直线上,AC⊥DC,求宣传牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,结果精确到1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明为了检验两枚六个面分别刻有点数1、 2、3、4、5、6的正六面体骰子的质量是否都合格,在相同的条件下,同时抛两枚骰子20 00 0次,结果发现两个朝上面的点数和是7的次数为20次.你认为这两枚骰子质量是否都合格(合格标准为:在相同条件下抛骰子时,骰子各个面朝上的机会相等)?并说明理由.

查看答案和解析>>

同步练习册答案