精英家教网 > 初中数学 > 题目详情

【题目】某城区近几年通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加。

(1)根据图中所提供的信息,回答下列问题:2008年绿地面积为 公顷。

2006、2007、2008年这三年中,绿地面积增加最多的是 年。

(2)为了满足城市发展的需要,计划到2010年使绿地总面积达到72.6公顷,试求这两年(2008——2010)绿地面积的年平均增长率。

【答案】(1)60;2007.(2)10%.

【解析】

(1)通过折线统计图上的数据就能得到答案;

(2)从图上可看出2008年的绿地面积为60公顷;题目给出2010年为72.6公顷,根据条件可列出方程求解.

(1)从图上可看出2008年对应的绿地面积数据是60;2006年增加面积是51-48=3,2007年为56-51=5,2008年为60-56=4,故增加最多的是2007年.

故答案为60;2007.

(2)设这两年(2008-2010)绿地面积的年平均增长率为x.

60(1+x)2=72.6,

x=0.1x=-2.1(舍去).

答:绿地面积的年平均增长率为10%.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给x人.

1)求第一轮后患病的人数;(用含x的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x>0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.

(1)求k的值;

(2)用含m的代数式表示CD的长;

(3)求Sm之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为等边ABC中边BC的中点,在边DA的延长线上取一点E,以CE为边、在CE的左下方作等边CEF,连结AF.若AB4AF,则CF的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABE△CDE都是等腰直角三角形,∠AEB∠DEC90°,连接ADACBCBD,若ADACAB,则下列结论:①AE垂直平分CD②AC平分∠BAD③△ABD是等边三角形,④∠BCD的度数为150°,其中正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:

①汽车共行驶了120千米;

②汽车在行驶途中停留了0.5小时;

③汽车在整个行驶过程中的平均速度为千米/时;

④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.

其中正确的说法有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).

问题:

(1)求∠ABC的度数;

(2)求证:△AEB≌△ADC;

(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).

(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,AD是∠BAC的平分线,GAD上一点,且AGDG,连接BG并延长BGACE,又过CAD的垂线交ADH,交ABF,则下列说法正确的是_____(填序号).

①DBC的中点;CDA>∠2③BE是△ABC的边AC上的中线;

④CH为△ACD的边AD上的高;AFC为等腰三角形;

连接DF,若CF6AD8,则四边形ACDF的面积为24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x=-4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=-4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.

(1)求点A的坐标;

(2)若OBC是等腰三角形,求此抛物线的函数关系式.

查看答案和解析>>

同步练习册答案